《山东省烟台市福山区重点名校2023年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省烟台市福山区重点名校2023年中考数学最后一模试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,ABC中,ABAC,CAD为ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )ADAE=BBEAC=CCAEBCDDAE=EAC2如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )ABCD3如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似
2、图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2)B(3,1)C(2,2)D(4,2)4如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )ABCD5实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()AacbcB|ab|abCacbcDbc6如图是用八块相同的小正方体搭建的几何体,它的左视图是( )ABCD7已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A10B14C10或14D8或108如图,O的直径AB垂直于
3、弦CD,垂足为E.若,AC=3,则CD的长为A6BCD39如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQDP;OAEOPA;当正方形的边长为3,BP1时,cosDFO=,其中正确结论的个数是( )A0B1C2D310如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为 cm2,则扇形圆心角的度数为()A120B140C150D160二、填空题(本大题共6个小题,每小题3分,共18分)11关于的一元二次方程有两个不相等
4、的实数根,则实数的取值范围是_12将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_,这两条直线间的距离为_13如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口)那么,蚂蚁从A出发到达E处的概率是_14计算:a3(a)2=_15已知点 M(1,2)在反比例函数的图象上,则 k_16如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反
5、弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到_边上,小球P与正方形的边完成第5次碰撞所经过的路程为_三、解答题(共8题,共72分)17(8分)问题提出(1)如图1,在ABC中,A75,C60,AC6,求ABC的外接圆半径R的值;问题探究(2)如图2,在ABC中,BAC60,C45,AC8,点D为边BC上的动点,连接AD以AD为直径作O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,BAD90,BCD30,ABAD,BC+CD12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由18(8分)如图所示,在ABC
6、D中,E是CD延长线上的一点,BE与AD交于点F,DECD.(1)求证:ABFCEB;(2)若DEF的面积为2,求ABCD的面积19(8分)已知:如图,AB=AE,1=2,B=E求证:BC=ED20(8分)关于x的一元二次方程x2(2m3)x+m2+1=1(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况21(8分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90,ADC=60,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形 ABCD 中,BAD=BCD=90,ABC=135,AB=2 2,BC=3
7、,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 22(10分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间
8、t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值23(12分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将ABC绕C点按顺时针方向旋转90得到A1B1C(1)画出A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长24已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函
9、数关系式参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:根据图中尺规作图的痕迹,可得DAE=B,故A选项正确,AEBC,故C选项正确,EAC=C,故B选项正确,ABAC,CB,CAEDAE,故D选项错误,故选D【点睛】本题考查作图复杂作图;平行线的判定与性质;三角形的外角性质2、A【解析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图3、A【解析】正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=6,AD
10、=BC=2,ADBG,OADOBG,=,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选A4、B【解析】先证明ABDEBD,从而可得AD=DE,然后先求得AEC的面积,继而可得到CDE的面积.【详解】BD平分ABC,ABD=EBD,AEBD,ADB=EDB=90,又BD=BD,ABDEBD,AD=ED,的面积为1,SAEC=SABC=,又AD=ED,SCDE= SAEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.5、A【解析】根据数轴上点的位置确定出a,b,c的范围,判断即可【详解】由数轴上点的位置得:ab0c,acbc
11、,|ab|ba,bc,acbc.故选A【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键6、B【解析】根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案【详解】左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,故选B【点睛】本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图7、B【解析】试题分析: 2是关于x的方程x22mx+3m=0的一个根,224m+3m=0,m=4,x28x+12=0,解得x1=2,
12、x2=1当1是腰时,2是底边,此时周长=1+1+2=2; 当1是底边时,2是腰,2+21,不能构成三角形 所以它的周长是2 考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质8、D【解析】解:因为AB是O的直径,所以ACB=90,又O的直径AB垂直于弦CD,所以在RtAEC 中,A=30,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.9、C【解析】由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到P=Q,根据余角的性质得到AQDP;故正确;根据勾股定理求
13、出直接用余弦可求出【详解】详解:四边形ABCD是正方形,AD=BC, BP=CQ,AP=BQ,在DAP与ABQ中, DAPABQ, P=Q, AQDP;故正确;无法证明,故错误BP=1,AB=3, 故正确,故选C【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高10、C【解析】根据扇形的面积公式列方程即可得到结论【详解】OB=10cm,AB=20cm,OA=OB+AB=30cm,设扇形圆心角的度数为,纸面面积为 cm2,=150,故选:C【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .二、填空题(
14、本大题共6个小题,每小题3分,共18分)11、b9【解析】由方程有两个不相等的实数根结合根的判别式,可得出,解之即可得出实数b的取值范围【详解】解:方程有两个不相等的实数根,解得:【点睛】本题考查的知识点是根的判别式,解题关键是牢记“当时,方程有两个不相等的实数根”12、y=x+1 【解析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1再利用等面积法求得这两条直线间的距离即可【详解】直线 y=x 沿y轴向上平移1个单位长度,所得直线的函数关系式为:y=x+1 A(0,1),B(1,0),AB=1,过点 O 作 OFAB 于点 F,
15、则ABOF=OAOB,OF=,即这两条直线间的距离为 故答案为y=x+1,【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m13、【解析】试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.14、a【解析】利用整式的除法运算即可得出答案.【详解】原式,.【点睛】本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.15、-2【解析】=1(-2)=-216、AB, 【解析】根据已知中的点E,
16、F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度【详解】根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得,第二次碰撞点为G,在AB上,且AG=AB,第三次碰撞点为H,在AD上,且AH=AD,第四次碰撞点为M,在DC上,且DM=DC,第五次碰撞点为N,在AB上,且BN=AB,第六次回到E点,BE=BC.由勾股定理可以得出EF=,FG= ,GH= ,HM=,MN= ,NE= ,故小球第5次经过的路程为:+ + + = ,故答案为AB, .【
17、点睛】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.三、解答题(共8题,共72分)17、(1)ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为9【解析】(1)如图1中,作ABC的外接圆,连接OA,OC证明AOC=90即可解决问题;(2)如图2中,作AHBC于H当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短;(3)如图3中,将ADC绕点A顺时针旋转90得到ABE,连接EC,作EHCB交CB的延长线于H,设BE=CD=x证明EC=AC,构建二次函数求出EC的最小值即可解决问题【详解
18、】解:(1)如图1中,作ABC的外接圆,连接OA,OCB180BACACB180751045,又AOC2B,AOC90,AC1,OAOC1,ABC的外接圆的R为1(2)如图2中,作AHBC于HAC8,C45,AHACsin4588,BAC10,当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图21中,当ADBC时,作OHEF于H,连接OE,OFEOF2BAC20,OEOF,OHEF,EHHF,OEFOFE30,EHOFcos3041,EF2EH2,EF的最小值为2(3)如图3中,将ADC绕点A顺时针旋转90得到ABE,连接EC,作
19、EHCB交CB的延长线于H,设BECDxAEAC,CAE90,ECAC,AECACE45,EC的值最小时,AC的值最小,BCDACB+ACDACB+AEB30,BEC+BCE10,EBC20,EBH10,BEH30,BHx,EHx,CD+BC2,CDx,BC2xEC2EH2+CH2(x)2+x22x+432,a10,当x1时,EC的长最小,此时EC18,ACEC9,AC的最小值为9【点睛】本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题18、(1)见解析;(2)16【解析】试题分析:(
20、1)要证ABFCEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用ABCD,可得一对内错角相等,则可证(2)由于DEFEBC,可根据两三角形的相似比,求出EBC的面积,也就求出了四边形BCDF的面积同理可根据DEFAFB,求出AFB的面积由此可求出ABCD的面积试题解析:(1)证明:四边形ABCD是平行四边形A=C,ABCDABF=CEBABFCEB(2)解:四边形ABCD是平行四边形ADBC,AB平行且等于CDDEFCEB,DEFABFDE=CD,SDEF=2SCEB=18,SABF=8,S四边形BCDF=SBCE-SDEF=16S四边形ABCD=S四边形BCDF+SABF=16
21、+8=1考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质19、证明见解析.【解析】由1=2可得CAB =DAE,再根据ASA证明ABCAED,即可得出答案.【详解】1=2,1+BAD=2+BAD,CAB=DAE,在ABC与AED中,B=E,AB=AE,CAB=DAE,ABCAED,BC=ED.20、 (1) ; (2)方程有两个不相等的实根.【解析】分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可详解:(1)m是方程的一个实数根,m2-(2m-3)m+m2+1=1,m;(2)=b2-4ac=-12m+5,
22、m1,-12m1=-12m+51此方程有两个不相等的实数根点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键21、(1)3 ,(2)见解析【解析】(1)易证ABDCBD,再利用含30的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,AEF即为所求.【详解】(1)AB=BC,AD=CD=3, BAD=BCD=90,ABDCBD(HL)ADB=CDB=ADC=30,AB=SABD=四边形ABCD的面积为2SABD=(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD
23、、CD交于EF,BEF的周长为BE+EF+BF=BE+EF+BF=BB为最短.故此时BEF的周长最小.【点睛】此题主要考查含30的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.22、(1)y1=t(t30)(0t30);(2)y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件【解析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0t20、t=20和20t30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最
24、值【详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t0)(t30) 再代入t=5,y1=25可得a=y1=t(t30)(0t30)(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:0t20时,y2=2t,当20t30时,y2=4t+120,y2=,(3)当0t20时,y=y1+y2=t(t30)+2t=80(t20)2 , 可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,当20t30时,y=y1+y2=t(t30)4t+120=125(t5)2 , 可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的
25、增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件23、(1)画图见解析;(2)A1(0,6);(3)弧BB1=【解析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案【详解】解:(1)A1B1C如图所示(2)A1(0,6)(3) 【点睛】本题考查了旋转作图和弧长的计算.24、(1).(2).【解析】试题分析:(1)根据取出黑球的概率=黑球的数量球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式试题解析:(1)取出一个黑球的概率(2)取出一个白球的概率与的函数关系式为:考点:概率