[校级联考]山东省滨州市五校2022-2023学年中考适应性考试数学试题含解析.doc

上传人:lil****205 文档编号:87841051 上传时间:2023-04-18 格式:DOC 页数:18 大小:844.50KB
返回 下载 相关 举报
[校级联考]山东省滨州市五校2022-2023学年中考适应性考试数学试题含解析.doc_第1页
第1页 / 共18页
[校级联考]山东省滨州市五校2022-2023学年中考适应性考试数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《[校级联考]山东省滨州市五校2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《[校级联考]山东省滨州市五校2022-2023学年中考适应性考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,在RtABC中,ACB=90,AC=BC=1,将绕点A逆时针旋转30后得到RtADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )ABC-D2下列各图中,1与2互为邻补角的是( )ABCD3若一组数据2,3,5,7的众数为7,则这组数据的中位数为( )A2B3C5D74当函数y=(x-1)2

2、-2的函数值y随着x的增大而减小时,x的取值范围是()ABCDx为任意实数5如图,且.、是上两点,.若,则的长为( )ABCD6如图,等腰ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数2,2,则AC的长度为()A2B4C2D47在下列交通标志中,是中心对称图形的是()ABCD8下列运算正确的是()ABCD9如图,ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若A=60,B=100,BC=4,则扇形BDE的面积为何?()ABCD10若关于x的一元二次方程ax2+2x5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围

3、是( )Aa3 Ba3 Ca3 Da3二、填空题(本大题共6个小题,每小题3分,共18分)11如图,正方形ABCD的边长为,点E在对角线BD上,且BAE=22.5,EFAB, 垂足为点F,则EF的长是_ 12如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且AOD=30,四边形OABD与四边形OABD关于直线OD对称(点A和A,B和B分别对应),若AB=1,反比例函数的图象恰好经过点A,B,则的值为_13甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)

4、14有下列等式:由a=b,得52a=52b;由a=b,得ac=bc;由a=b,得;由,得3a=2b;由a2=b2,得a=b其中正确的是_15如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为_(结果保留)16如图,A、B、C是O上的三点,若C=30,OA=3,则弧AB的长为_(结果保留)三、解答题(共8题,共72分)17(8分)(1)解方程:=0;(2)解不等式组 ,并把所得解集表示在数轴上18(8分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方

5、米;4台型和7台型挖掘机同时施工一小时挖土225立方米每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元分别求每台型, 型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?19(8分)如图,矩形ABCD绕点C顺时针旋转90后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;(1)求证:AM=FM;(2)若AMD=a求证:=cos20(8分)如图,在RtABC中,C90,AB的垂直平分线交AC于点D,

6、交AB于点E(1)求证:ADEABC;(2)当AC8,BC6时,求DE的长21(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值22(10分)如图,抛物线yx2+5x

7、+n经过点A(1,0),与y轴交于点B(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且PAB是以AB为腰的等腰三角形,试求P点坐标23(12分)如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四

8、边形,求P点的坐标24如图,抛物线y=ax2+bx+c与x轴的交点分别为A(6,0)和点B(4,0),与y轴的交点为C(0,3)(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;若DCB=CDB,CD是MN的垂直平分线,求点M的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到RtADERtACB,于是S阴

9、影部分=SADE+S扇形ABD-SABC=S扇形ABD【详解】ACB=90,AC=BC=1,AB=,S扇形ABD=,又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,S阴影部分=SADE+S扇形ABDSABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.2、D【解析】根据邻补角的定义可知:只有D图中的是邻补角,其它都不是故选D3、C【解析】试题解析:这组数据的众数为7,x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1故选C考点:众数;中位数.4、B【解析】分析:利用二次函数的增减性求解

10、即可,画出图形,可直接看出答案详解:对称轴是:x=1,且开口向上,如图所示, 当x1时,函数值y随着x的增大而减小; 故选B点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质5、D【解析】分析:详解:如图,ABCD,CEAD,1=2,又3=4,180-1-4=180-2-3,即A=C.BFAD,CED=BFD=90,AB=CD,ABFCDE,AF=CE=a,ED=BF=b,又EF=c,AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明ABFCDE是关键.6、C【解析】根据等腰三角形的性质和勾股定理解答即可【详解】解:点A,D分别对应数轴上的实数2,2,A

11、D4,等腰ABC的底边BC与底边上的高AD相等,BC4,CD2,在RtACD中,AC,故选:C【点睛】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理7、C【解析】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C8、D【解析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(ab)2=a22ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可【详解】解:A、a-(b+c)

12、=a-b-ca-b+c,故原题计算错误;B、(x+1)2=x2+2x+1x+1,故原题计算错误;C、(-a)3=,故原题计算错误;D、2a23a3=6a5,故原题计算正确;故选:D【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则9、C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:A=60,B=100,C=18060100=20,DE=DC,C=DEC=20,BDE=C+DEC=40,S扇形DBE=故选C点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=10、B【解析】试题分析:当x=0时,y=5;当x=1时,y=a1,函数与x轴在0

13、和1之间有一个交点,则a10,解得:a1考点:一元二次方程与函数二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可【详解】设EF=x,四边形ABCD是正方形,AB=AD,BAD=90,ABD=ADB=45,BD=AB=4+4,EF=BF=x,BE=x,BAE=22.5,DAE=90-22.5=67.5,AED=180-45-67.5=67.5,AED=DAE,AD=ED,BD=BE+ED=x+4+2=4+4,解得:x=2,即EF=2.12、【解析】解:四边形ABCO是矩形,AB=1,设B(m,1),OA=

14、BC=m,四边形OABD与四边形OABD关于直线OD对称,OA=OA=m,AOD=AOD=30,AOA=60,过A作AEOA于E,OE=m,AE=m,A(m,m),反比例函数y=(k0)的图象恰好经过点A,B,mm=m,m=,k=【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键13、甲【解析】乙所得环数的平均数为:=5,S2=+=+=16.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.14、【解析】由a=b,得52a=52b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上

15、5,等式仍成立,所以本选项正确,由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确,由a=b,得,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为可能为0,所以本选项不正确,由,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确,因为互为相反数的平方也相等,由a2=b2,得a=b,或a=-b,所以本选项错误, 故答案为: .15、.【解析】连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.【详解】解:如图所示,连接OA,OB,OC

16、,正六边形内接于AOB=60,四边形OABC是菱形, AG=GC,OG=BG,AGO=BGCAGOBGC.AGO的面积=BGC的面积弓形DE的面积=弓形AB的面积阴影部分的面积=弓形DE的面积+ABC的面积=弓形AB的面积+AGB的面积+BGC的面积=弓形AB的面积+AGB的面积+AGO的面积=扇形OAB的面积= = 故答案为.【点睛】本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.16、【解析】C=30,AOB=60,.即的长为.三、解答题(共8题,共72分)17、(1)x=;(2)x3;数轴见解析;【解析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2

17、)先求出每个不等式的解集,再求出不等式组的解集即可【详解】解:(1)方程两边都乘以(12x)(x+2)得:x+2(12x)=0,解得: 检验:当时,(12x)(x+2)0,所以是原方程的解,所以原方程的解是;(2) ,解不等式得:x1,解不等式得:x3,不等式组的解集为x3,在数轴上表示为:【点睛】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键18、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案方案一: 型挖据机7台,

18、型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米(2)设型挖掘机有台,总费用为元,则型挖据机有台根据题意,得 ,因为,解得,又因为,解得,所以所以,共有三种调配方案方案一:当时, ,即型挖据机7台,型挖掘机5台;方案二

19、:当时, ,即型挖掘机8台,型挖掘机4台;方案三:当时, ,即型挖掘机9台,型挖掘机3台,由一次函数的性质可知,随的减小而减小,当时,此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题19、(1)见解析;(2)见解析.【解析】(1)由旋转性质可知:AD=FG,DC=CG,可得CGD=45,可求FGH=FHG=45,则HF=FG=AD,所以可证ADMMHF,结论可得(2)作FNDG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2M

20、F=AF,由cos=cosFMG=,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且DCG=90,DGC=45从而DGF=45,EFG=90,HF=FG=AD又由旋转可知,ADEF,DAM=HFM,又DMA=HMF,ADMFHMAM=FM(2)作FNDG垂足为NADMMFHDM=MH,AM=MF=AFFH=FG,FNHGHN=NGDG=DM+HM+HN+NG=2(MH+HN)MN=DGcosFMG=cosAMD=cos【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形20、(1)见解析;(2)【解析】(1)根据两角对应相等,两三角形相似即可判定;

21、(2)利用相似三角形的性质即可解决问题【详解】(1)DEAB,AED=C=90A=A,AEDACB(2)在RtABC中,AC=8,BC=6,AB1DE垂直平分AB,AE=EB=2AEDACB,DE【点睛】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型21、m的值是12.1【解析】根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值【详解】由题意可得,10006+20004=1000(1m%)6+2000(1+2m%)4(1m%)解得,m1=0(舍去),m

22、2=12.1,即m的值是12.1【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值22、(1);(2)(0,)或(0,4)【解析】试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;(2)本题要分两种情况进行讨论:PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标试题解析:(1)抛物线经过点A(1,0),;(2)抛物线的解析式为,令,则,B点坐标(0,4),AB=,当PB

23、=AB时,PB=AB=,OP=PBOB=P(0,),当PA=AB时,P、B关于x轴对称,P(0,4),因此P点的坐标为(0,)或(0,4)考点:二次函数综合题23、 (1)、y=+x+4;(2)、不存在,理由见解析.【解析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.试题解析:(1)、抛物线y=a+bx+c(a0)过点C(0,4) C=4=1 b=2a 抛物线过点A(2,0) 4a2b+c=0 由解得:a=

24、,b=1,c=4 抛物线的解析式为:y=+x+4(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FHx轴于点H,FGy轴于点G. 设点F的坐标为(t,+t+4),其中0t4 则FH=+t+4 FG=tOBF的面积=OBFH=4(+t+4)=+2t+8 OFC的面积=OCFG=2t四边形ABFC的面积=AOC的面积+OBF的面积+OFC的面积=+4t+12令+4t+12=17 即+4t5=0 =1620=40 方程无解不存在满足条件的点F考点:二次函数的应用24、(1)y=x2x+3;(2)点D坐标为(,0);点M(,0).【解析】(1)应用待定系数法问题可解;(

25、2)通过分类讨论研究APQ和CDO全等由已知求点D坐标,证明DNBC,从而得到DN为中线,问题可解【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得: ,抛物线解析式为:y=-x2-x+3;(2)存在点D,使得APQ和CDO全等,当D在线段OA上,QAP=DCO,AP=OC=3时,APQ和CDO全等,tanQAP=tanDCO,OD=,点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件OC=3,OB=4,BC=5,DCB=CDB,BD=BC=5,OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,NDC=MDC,NDC=DCB,DNBC,则点N为AC中点DN时ABC的中位线,DN=DM=BC=,OM=DM-OD=点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识解答时,注意数形结合

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁