《安徽省临泉重点名校2023年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省临泉重点名校2023年中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果,则a的取值范围是( )Aa0Ba0Ca0Da02如图,在ABC中,C90,AD是BAC的角平分线,若CD2,AB8,则ABD的面积是()A6B8C10D123如图,已知点A(0,1),B(0,1),以点A为圆心,AB为半径作圆,交x轴的正半轴
2、于点C,则BAC等于( )A90B120C60D304某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A最喜欢篮球的人数最多B最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C全班共有50名学生D最喜欢田径的人数占总人数的10 %5在0,3,0.6,这5个实数中,无理数的个数为()A1个B2个C3个D4个6下列运算正确的是()Axx4=x5Bx6x3=x2C3x2x2=3D(2x2)3=6x67运用乘法公式计算(4+x)(4x)的结果是()Ax216B16x2C168x+x2D8x28已知一次函数yx+2的图象,绕x轴上一点P(
3、m,1)旋转181,所得的图象经过(11),则m的值为()A2B1C1D29如图,G,E分别是正方形ABCD的边AB,BC上的点,且AGCE,AEEF,AEEF,现有如下结论:BEDH;AGEECF;FCD45;GBEECH其中,正确的结论有( )A4 个B3 个C2 个D1 个10如图,ABC为钝角三角形,将ABC绕点A按逆时针方向旋转120得到ABC,连接BB,若ACBB,则CAB的度数为()A45B60C70D9011下列图形中,不是轴对称图形的是()ABCD12某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A
4、168(1x)2108B168(1x2)108C168(12x)108D168(1+x)2108二、填空题:(本大题共6个小题,每小题4分,共24分)13如果x3nym+4与3x6y2n是同类项,那么mn的值为_14如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为_ 152018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_. 16已知关于x的不等式组只有四个整数解,则实数a的取值范是_17在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出
5、发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是_,的坐标是_18如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行
6、车与买7辆B型号的自行车所花费用相同.(1)A,B两种型号的自行车的单价分别是多少?(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.20(6分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表种产品种产品成本(万元件)25利润(万元件)13(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?21(6分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米
7、所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量22(8分)已知ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出ABC绕点C按顺时针方向旋转90后的ABC;求点A旋转到点A所经过的路线长(结果保留).23(8分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?24(10分
8、)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿)因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?25(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点动点C、D分别在直线AB、OB上,将BCD沿着CD折叠,得BCD()如图1,若CDAB,
9、点B恰好落在点A处,求此时点D的坐标;()如图2,若BD=AC,点B恰好落在y轴上,求此时点C的坐标;()若点C的横坐标为2,点B落在x轴上,求点B的坐标(直接写出结果即可)26(12分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)27(12分)已知:如图,四边形ABCD中,ADBC,AD=CD,E是对角线BD上一点,且EA=EC(1)求证:四边形ABCD是菱形;(
10、2)如果BDC=30,DE=2,EC=3,求CD的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1若|-a|=-a,则可求得a的取值范围注意1的相反数是1【详解】因为|-a|1,所以-a1,那么a的取值范围是a1故选C【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是12、B【解析】分析:过点D作DEAB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然
11、后根据三角形的面积公式列式计算即可得解详解:如图,过点D作DEAB于E,AB=8,CD=2,AD是BAC的角平分线, DE=CD=2,ABD的面积 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.3、C【解析】解:A(0,1),B(0,1),AB=1,OA=1,AC=1在RtAOC中,cosBAC=,BAC=60故选C点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧4、C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误
12、;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.5、B【解析】分别根据无理数、有理数的定义逐一判断即可得【详解】解:在0,-3,0.6,这5个实数中,无理数有、这2个,故选B【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式6、A【解析】根据同底数幂的乘法,同底数幂的除法,合并
13、同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、xx4=x5,原式计算正确,故本选项正确;B、x6x3=x3,原式计算错误,故本选项错误;C、3x2x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误故选A7、B【解析】根据平方差公式计算即可得解【详解】,故选:B【点睛】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.8、C【解析】根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论【详解】一次函数yx+2的图象,绕x轴上一点P(m,1)旋转181,所得的图象经过(11
14、),设旋转后的函数解析式为yx1,在一次函数yx+2中,令y1,则有x+21,解得:x4,即一次函数yx+2与x轴交点为(4,1)一次函数yx1中,令y1,则有x11,解得:x2,即一次函数yx1与x轴交点为(2,1)m1,故选:C【点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式本题属于基础题,难度不大9、C【解析】由BEG45知BEA45,结合AEF90得HEC45,据此知 HCEC,即可判断;求出GAE+AEG45,推出GAEFEC,根据 SAS 推出GAECEF,即可判断;求出AGEECF135,即可判断;求出FEC45,根据相似三角形的判定得出GBE和ECH
15、 不相似,即可判断【详解】解:四边形 ABCD 是正方形,ABBCCD,AGGE,BGBE,BEG45,BEA45,AEF90,HEC45, HCEC,CDCHBCCE,即 DHBE,故错误;BGBE,B90,BGEBEG45,AGE135,GAE+AEG45,AEEF,AEF90,BEG45,AEG+FEC45,GAEFEC,在GAE 和CEF 中,AG=CE,GAE=CEF,AE=EF,GAECEF(SAS),正确;AGEECF135,FCD1359045,正确;BGEBEG45,AEG+FEC45,FEC45,GBE 和ECH 不相似,错误; 故选:C【点睛】本题考查了正方形的性质,等腰
16、三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大10、D【解析】已知ABC绕点A按逆时针方向旋转l20得到ABC,根据旋转的性质可得BAB=CAC=120,AB=AB,根据等腰三角形的性质和三角形的内角和定理可得ABB=(180-120)=30,再由ACBB,可得CAB=ABB=30,所以CAB=CAC-CAB=120-30=90故选D11、A【解析】观察四个选项图形,根据轴对称图形的概念即可得出结论【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形故选A【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴
17、可使图形两部分折叠后重合12、A【解析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1故选A【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可二、填空题:(本大题共6个小题,每小题4分,共24分)13、0【解析】根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.故答案为0点睛:此题主要考查
18、了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.14、1【解析】易得:ABMOCM,利用相似三角形的相似比可得出小明的影长【详解】解:根据题意,易得MBAMCO,根据相似三角形的性质可知 ,即,解得AM=1m则小明的影长为1米故答案是:1【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长15、【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:61,故答案为:61【点睛】本题考查科学记数法
19、的表示方法科学记数法的表示形式为a10n的形式,其中1|a|4,解得:x2,原不等式组的解集为 由不等式组只有四个整数解,即为1,0,1,2,可得出实数a的范围为 故答案为点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.17、 【解析】设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论【详解】设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(
20、2,0),K5(),K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)2018=4504+2,K2018为(1009,0)故答案为:(),(1009,0)【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键18、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),点E在抛物线上,整理得,解得或(舍去),故正
21、方形ADEF的边长是2.考点:反比例函数系数k的几何意义三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)A型自行车的单价为210元,B型自行车的单价为240元.(2) 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.【解析】分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题(2)设购买A型自行车a辆,B型自行车的(600-a)辆总费用为w元构建一次函数,利用一次函数的性质即可解决问题详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元,由题意,解得,型自行车的单价为210元
22、,B型自行车的单价为240元.(2)设购买A型自行车a辆,B型自行车的辆.总费用为w元.由题意,随a的增大而减小,当时,w有最小值,最小值,最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.点睛:本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型20、(1)生产产品8件,生产产品2件;(2)有两种方案:方案,种产品2件,则种产品8件;方案,种产品3件,则种产品7件【解析】(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;(2)设生产产品件,则生产
23、产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案【详解】解:(1)设生产种产品件,则生产种产品件,依题意得:,解得: ,则,答:生产产品8件,生产产品2件;(2)设生产产品件,则生产产品件,解得:因为为正整数,故或3;答:共有两种方案:方案,种产品2件,则种产品8件;方案,种产品3件,则种产品7件【点睛】此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键21、现在平均每天清雪量为1立方米【解析】分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”
24、列分式方程求解.详解:设现在平均每天清雪量为x立方米,由题意,得解得 x=1经检验x=1是原方程的解,并符合题意答:现在平均每天清雪量为1立方米点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.22、(1)、(2)见解析(3)【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长试题解析:(1)A(0,4)C(3,1)(2)如图所示:(3)根据勾股定理可得:AC=3,则考点:图形的旋转、扇形的弧长计算公式23、(1)21人;(2)1
25、0人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)2110%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解24、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】(1)设2018至202
26、0年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=2.375(不合题意,舍去)答
27、:2018至2020年寝室数量的年平均增长率为37.5%(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(1216y)间,单人间的数量在20至30之间(包括20和30), ,解得:15 y16 根据题意得:w=2y+20y+1216y=16y+121,当y=16时,16y+121取得最大值为1答:该校的寝室建成后最多可供1名师生住宿【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式25、(1)D(0,);(1)C(116,1118);(3
28、)B(1+,0),(1,0).【解析】(1)设OD为x,则BD=AD=3,在RTODA中应用勾股定理即可求解;(1)由题意易证BDCBOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CEAO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=BC,再利用特殊角的三角函数可逐一求解.【详解】()设OD为x,点A(3,0),点B(0,),AO=3,BO=AB=6折叠BD=DA在RtADO中,OA1+OD1=DA19+OD1=(OD)1OD=D(0,)()折叠BDC
29、=CDO=90CDOA且BD=AC,BD=18OD=(18)=18tanABO=,ABC=30,即BAO=60tanABO=,CD=116D(116,1118)()如图:过点C作CEAO于ECEAOOE=1,且AO=3AE=1,CEAO,CAE=60ACE=30且CEAOAC=1,CE=BC=ABACBC=61=4若点B落在A点右边,折叠BC=BC=4,CE=,CEOABE=OB=1+B(1+,0)若点B落在A点左边,折叠BC=BC=4,CE=,CEOABE=OB=1B(1,0)综上所述:B(1+,0),(1,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B点的两
30、种情况是解题关键.26、(1)袋子中白球有2个;(2)见解析, .【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案【详解】解:(1)设袋子中白球有x个,根据题意得:,解得:x2,经检验,x2是原分式方程的解,袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:【点睛】此题考查了列表法或树状图法求概率注意掌握方程思想的应用注意概率=所求情况数与总情况数之比27
31、、(1)证明见解析;(2)CD的长为2【解析】(1)首先证得ADECDE,由全等三角形的性质可得ADE=CDE,由ADBC可得ADE=CBD,易得CDB=CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)作EFCD于F,在RtDEF中,根据30的性质和勾股定理可求出EF和DF的长,在RtCEF中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在ADE与CDE中,ADECDE(SSS),ADE=CDE,ADBC,ADE=CBD,CDE=CBD,BC=CD,AD=CD,BC=AD,四边形ABCD为平行四边形,AD=CD,四边形ABCD是菱形;(2)作EFCD于F.BDC=30,DE=2,EF=1,DF=,CE=3,CF=2,CD=2+.【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30的直角三角形的性质,勾股定理.证明AD=BC是解(1)的关键,作EFCD于F,构造直角三角形是解(2)的关键.