《山东省日照市新营中学2023届中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省日照市新营中学2023届中考试题猜想数学试卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、的大小关系是()ABCD2如果t0,那么a+t与a的大小关系是( )Aa+ta Ba+ta Ca+ta D不能确定3如图,PA,PB分别与O相切于A,B两点,若C65,则P的度数为( )A65B130C50D1004有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )ABCD5如图,四边形ABCD内接于O,若B130,则AOC的大小是()A130B120C110D1006一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,
3、5,6,投掷一次,朝上一面的数字是偶数的概率为( )A B C D 7如图是某个几何体的展开图,该几何体是( )A三棱柱B圆锥C四棱柱D圆柱8a0,函数y与yax2+a在同一直角坐标系中的大致图象可能是()ABCD9在解方程1时,两边同时乘6,去分母后,正确的是()A3x162(3x1)B(x1)12(x1)C3(x1)12(3x1)D3(x1)62(3x1)10将一根圆柱形的空心钢管任意放置,它的主视图不可能是()ABCD11如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24c
4、mD28cm12如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D二、填空题:(本大题共6个小题,每小题4分,共24分)13函数y=的定义域是_14若正六边形的内切圆半径为2,则其外接圆半径为_15定义一种新运算:x*y=,如2*1=3,则(4*2)*(1)=_16计算:2cos60+(5)=_.17如图是某商品的标志图案,AC与BD是O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,BAC=36,则图中阴影部分的面积为_18在ABC中,A:B:C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_cm三
5、、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.20(6分)已知ABC内接于O,AD平分BAC(1)如图1,求证:;(2)如图2,当BC为直径时,作BEAD于点E,CFAD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交O于点G,连接OE,若EF=2EG,AC=2,求OE的长21(6分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电
6、子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?22(8分)如图,以AD为直径的O交AB于C点,BD的延长线交O于E点,连CE交AD于F点,若ACBC(1)求证:;(2)若,求tanCED的值23(8分)如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,若 AB,求证:四边形 ABCD 是正方形24(1
7、0分)在ABCD中,过点D作DEAB于点E,点F在边CD上,DF=BE,连接AF,BF(1)求证:四边形DEBF是矩形;(2)若AF平分DAB,AE=3,BF=4,求ABCD的面积25(10分)如图,抛物线y=ax22ax+c(a0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0)(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QEAC,交BC于点E,连接CQ当CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)
8、问:是否存在这样的直线l,使得ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由26(12分)当x取哪些整数值时,不等式与47x3都成立?27(12分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;A2B2C2的面积是 平方单位参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只
9、有一项是符合题目要求的)1、C【解析】首先求出二次函数的图象的对称轴x=2,且由a=10,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以总结可得故选C点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质2、A【解析】试题分析:根据不等式的基本性质即可得到结果.t0,ata,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.3、C【解析】试题分析:PA
10、、PB是O的切线,OAAP,OBBP,OAP=OBP=90,又AOB=2C=130,则P=360(90+90+130)=50故选C考点:切线的性质4、B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:共有6种等可能的结果,一次打开锁的有2种情况,一次打开锁的概率为:故选B点睛:本题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比5、D【解析】分析:先根据圆内接四边形的性质得到 然
11、后根据圆周角定理求 详解: 故选D.点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.6、B【解析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.7、A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱【详解】解:观察图形可知,这个几何体是三棱柱故选A【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键8、D【解析】分a0和a0两种情况分类讨论即可确定正确的选项【详解】当a0时,函数y 的图象位于一、三象限,ya
12、x2+a的开口向下,交y轴的正半轴,没有符合的选项,当a0时,函数y的图象位于二、四象限,yax2+a的开口向上,交y轴的负半轴,D选项符合;故选D【点睛】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大9、D【解析】解: ,3(x1)6=2(3x+1),故选D点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型10、A【解析】试题解析:一根圆柱形的空心钢管任意放置,不管钢管怎么放置,它的三视图始终是,主视图是它们中一个,主视图不可能是故选A.11、C【解析】首先根据平行线的性质以及折叠的性质证明EAC=DCA,
13、根据等角对等边证明FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(cm)故选C【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键12、D【解析】根据同弧或等弧所对的圆周角相等可知BED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DAB=DEB,tanDEB= tanDAB=,故选D【点睛】本题考查了圆周角定理(同弧
14、或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】分析:根据分式有意义的条件是分母不为0,即可求解.详解:由题意得:x-20,即.故答案为点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义.14、【解析】根据题意画出草图,可得OG=2,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接、,
15、作于;则,六边形正六边形,是等边三角形,正六边形的内切圆半径为2,则其外接圆半径为故答案为【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.15、-1【解析】利用题中的新定义计算即可求出值【详解】解:根据题中的新定义得:原式=*(1)=3*(1)=1故答案为1【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键16、1【解析】解:原式=12+1=1故答案为117、10cm1【解析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到BA
16、C=ABO=36,由圆周角定理得到AOD=71,于是得到结论【详解】解:AC与BD是O的两条直径,ABC=ADC=DAB=BCD=90,四边形ABCD是矩形,SABO=SCDO =SAOD=SBOD,图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,OA=OB,BAC=ABO=36,AOD=71,图中阴影部分的面积=1=10,故答案为10cm1点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键18、1【解析】根据在ABC中,A:B:C=1:2:3,三角形内角和等于180可得A,B,C的度数,它的最小边的长是2cm,
17、从而可以求得最大边的长【详解】在ABC中,A:B:C=1:2:3, 最小边的长是2cm,a=2.c=2a=1cm.故答案为:1.【点睛】考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)或1.【解析】(1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.【详解】(1)当时,有,由方程,解
18、得,即.由方程,解得,即.因为为线段上一点,所以.(2)解方程,得,即.解方程,得,即.当为线段靠近点的三等分点时,则,即,解得.当为线段靠近点的三等分点时,则,即,解得.综上可得,或1.【点睛】本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.20、(1)证明见解析;(1)证明见解析;(3)1.【解析】(1)连接OB、OC、OD,根据圆心角与圆周角的性质得BOD=1BAD,COD=1CAD,又AD平分BAC,得BOD=COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OMAD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO
19、交AB于点H,连接CG,连接OA,BC为O直径,则G=CFE=FEG=90,四边形CFEG是矩形,得EG=CF,又AD平分BAC,再根据邻补角与余角的性质可得BAF=ABE,ACF=CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出HBOABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,BAD和BOD是所对的圆周角和圆心角,CAD和COD是所对的圆周角和圆心角,BOD=1BAD,COD=1CAD,AD平分BAC,BAD=CAD,BOD=COD,=;(1)如图1,过点O作OMAD于点M,OMA=90,
20、AM=DM,BEAD于点E,CFAD于点F,CFM=90,MEB=90,OMA=MEB,CFM=OMA,OMBE,OMCF,BEOMCF,OB=OC,=1,FM=EM,AMFM=DMEM,DE=AF;(3)延长EO交AB于点H,连接CG,连接OABC为O直径,BAC=90,G=90,G=CFE=FEG=90,四边形CFEG是矩形,EG=CF,AD平分BAC,BAF=CAF=90=45,ABE=180BAFAEB=45,ACF=180CAFAFC=45,BAF=ABE,ACF=CAF,AE=BE,AF=CF,在RtACF中,AFC=90,sinCAF=,即sin45=,CF=1=,EG=,EF=
21、1EG=1,AE=3,在RtAEB中,AEB=90,AB=6,AE=BE,OA=OB,EH垂直平分AB,BH=EH=3,OHB=BAC,ABC=ABCHBOABC,OH=1,OE=EHOH=31=1【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.21、(1)当4x6时,w1=x2+12x35,当6x8时,w2=x2+7x23;(2)最快在第7个月可还清10万元的无息贷款【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价成本)销售量费用,得结论;(
22、2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,直线AB的解析式为:y=x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=x+5,工资及其他费作为:0.45+1=3万元,当4x6时,w1=(x4)(x+8)3=x2+12x35,当6x8时,w2=(x4)(x+5)3=x2+7x23;(2)当4x6时,w1=x2+12x35=(x6)2+1,当x=6时,w1取最大值是1,当6x8时,w2=x2+7x23=(x7)2+,当x=7时,w2取最大值是1.5,=6,即
23、最快在第7个月可还清10万元的无息贷款点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高22、(1)见解析;(2)tanCED【解析】(1)欲证明,只要证明即可;(2)由,可得,设FO2a,OC3a,则DFa,DE1.5a,ADDB6a,由,可得BDBEBCBA,设ACBCx,则有,由此求出AC、CD即可解决问题.【详解】(1)证明:如下图,连接AE,AD是直径,DCAB,ACCB,DADB,CDACDB,BDCEAC,AECADC,EACAEC,;(2)解:如下图,连接OC,AOOD,ACCB,
24、OCBD,设FO2a,OC3a,则DFa,DE1.5a,ADDB6a,BADBEC,BB,BDBEBCBA,设ACBCx,则有,.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.23、详见解析.【解析】四边形ABCD是正方形,利用已知条件先证明四边形ABCD是平行四边形,再证明四边形ABCD是矩形,再根据对角线垂直的矩形是正方形即可证明四边形ABCD是正方形【详解】证明:在四边形ABCD中,OA=OC,OB=OD,四边形ABCD是平行四边形,OA=OB=OC=OD,又AC=AO+OC,BD=OB+DO,A
25、C=BD,平行四边形是矩形,在AOB中,AOB是直角三角形,即ACBD,矩形ABCD是正方形.【点睛】本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强24、(1)证明见解析(2)3【解析】试题分析:(1)根据平行四边形的性质,可证DFEB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.试
26、题解析:(1)四边形ABCD是平行四边形,DCAB,即DFEB又DFBE,四边形DEBF是平行四边形 DEAB,EDB90四边形DEBF是矩形 (2)四边形DEBF是矩形,DEBF4,BDDFDEAB,AD1 DCAB,DFAFABAF平分DAB,DAFFABDAFDFADFAD1BE1ABAEBE312SABCDABBF24325、(1)y=;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1,1)或(1+,2)或(1,2)【解析】试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;(1)可求得点C关于x轴的对称点C的坐标,连接CN交x轴于点K
27、,再求得直线CK的解析式,可求得K点坐标;(2)过点E作EGx轴于点G,设Q(m,0),可表示出AB、BQ,再证明BQEBAC,可表示出EG,可得出CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可试题解析:(1)抛物线经过点C(0,4),A(4,0),解得 ,抛物线解析式为y= x1+x+4;(1)由(1)可求得抛物线顶点为N(1, ),如图1,作点C关于x轴的对称点C(0,4),连接CN交x轴于点K,则K点即为所求,设直线CN的解析式为y=kx+b,把C、N点坐标代入
28、可得 ,解得 ,直线CN的解析式为y=x-4 ,令y=0,解得x= ,点K的坐标为(,0);(2)设点Q(m,0),过点E作EGx轴于点G,如图1,由 x1+x+4=0,得x1=1,x1=4,点B的坐标为(1,0),AB=6,BQ=m+1,又QEAC,BQEBAC, ,即 ,解得EG= ;SCQE=SCBQSEBQ=(CO-EG)BQ=(m+1)(4-)= =-(m-1)1+2 又1m4,当m=1时,SCQE有最大值2,此时Q(1,0);(4)存在在ODF中,()若DO=DF,A(4,0),D(1,0),AD=OD=DF=1又在RtAOC中,OA=OC=4,OAC=45DFA=OAC=45AD
29、F=90此时,点F的坐标为(1,1)由 x1+x+4=1,得x1=1+ ,x1=1此时,点P的坐标为:P1(1+,1)或P1(1,1);()若FO=FD,过点F作FMx轴于点M由等腰三角形的性质得:OM=OD=1,AM=2在等腰直角AMF中,MF=AM=2F(1,2)由 x1+x+4=2,得x1=1+,x1=1此时,点P的坐标为:P2(1+,2)或P4(1,2);()若OD=OF,OA=OC=4,且AOC=90AC=4点O到AC的距离为1而OF=OD=11,与OF1矛盾在AC上不存在点使得OF=OD=1此时,不存在这样的直线l,使得ODF是等腰三角形综上所述,存在这样的直线l,使得ODF是等腰
30、三角形所求点P的坐标为:(1+,1)或(1,1)或(1+,2)或(1,2)点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.26、2,1【解析】根据题意得出不等式组,解不等式组求得其解集即可【详解】根据题意得,解不等式,得:x1,解不等式,得:x1,则不等式组的解集为1x1,x可取的整数值是2,1【点睛】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键27、(1)(2,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理