山东省滨州市滨城区2023届中考试题猜想数学试卷含解析.doc

上传人:lil****205 文档编号:87999768 上传时间:2023-04-19 格式:DOC 页数:21 大小:848.50KB
返回 下载 相关 举报
山东省滨州市滨城区2023届中考试题猜想数学试卷含解析.doc_第1页
第1页 / 共21页
山东省滨州市滨城区2023届中考试题猜想数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《山东省滨州市滨城区2023届中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省滨州市滨城区2023届中考试题猜想数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1如图,在中,D、E分别在边AB、AC上,交AB于F,那么下列比例式中正确的是ABCD2如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A5:2B3:2C3:1D2:13下列各数3.1415926,中,无理数有( )A2个B3个C4个D5个4我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A方差是4B极

3、差是2C平均数是9D众数是95小手盖住的点的坐标可能为( )ABCD6下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )ABCD7方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3Dx1=,x2=38某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A1000(1+x)2=1000+500B1000(1+x)2=500C500(1+x)2=1000D1000(1+2x)=1000+5009等

4、腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )A9 cm B12 cm C9 cm或12 cm D14 cm10二次函数y3(x1)2+2,下列说法正确的是()A图象的开口向下B图象的顶点坐标是(1,2)C当x1时,y随x的增大而减小D图象与y轴的交点坐标为(0,2)二、填空题(本大题共6个小题,每小题3分,共18分)11某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角EAB=53,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m则篮

5、球架横伸臂DG的长约为_m(结果保留一位小数,参考数据:sin53, cos53,tan53)12已知ABC中,C=90,AB=9,把ABC 绕着点C旋转,使得点A落在点A,点B落在点B若点A在边AB上,则点B、B的距离为_13关于x的方程kx2(2k+1)x+k+2=0有实数根,则k的取值范围是_14如图,某小型水库栏水坝的横断面是四边形ABCD,DCAB,测得迎水坡的坡角=30,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_m 15函数中自变量x的取值范围是_;函数中自变量x的取值范围是_16如图,ABC内接于O,AB是O的直径,点D在圆O上,BDCD,A

6、B10,AC6,连接OD交BC于点E,DE_三、解答题(共8题,共72分)17(8分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元求该省第二、三季度投资额的平均增长率18(8分)如图,RtABC的两直角边AC边长为4,BC边长为3,它的内切圆为O,O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求O的半径长;(2)求线段DG的长19(8分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性AMB恒为等腰三角形,我们规定:当AMB为

7、直角三角形时,就称AMB为该抛物线的“完美三角形”(1)如图2,求出抛物线的“完美三角形”斜边AB的长;抛物线与的“完美三角形”的斜边长的数量关系是 ;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值20(8分)(问题情境)张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在ABC中,ABAC,点P为边BC上任一点,过点P作PDAB,PEAC,垂足分别为D,E,过点C作CFAB,垂足为F,求证:PD+PECF小军的证明思路是:如图2,连接AP,由ABP与ACP面积之和等于ABC的面积可以证得:PD+PECF小俊

8、的证明思路是:如图2,过点P作PGCF,垂足为G,可以证得:PDGF,PECG,则PD+PECF变式探究如图3,当点P在BC延长线上时,其余条件不变,求证:PDPECF;请运用上述解答中所积累的经验和方法完成下列两题:结论运用如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C处,点P为折痕EF上的任一点,过点P作PGBE、PHBC,垂足分别为G、H,若AD8,CF3,求PG+PH的值;迁移拓展图5是一个航模的截面示意图在四边形ABCD中,E为AB边上的一点,EDAD,ECCB,垂足分别为D、C,且ADCEDEBC,AB2dm,AD3dm,BDdmM、N分别为AE、BE的中点,连接

9、DM、CN,求DEM与CEN的周长之和21(8分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包若供货厂家规定市场价不得低于30元/包试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?22(10分)对于方程1,某同学解法如下:解:方程两边同乘6,得3x2(x1)1 去括

10、号,得3x2x21 合并同类项,得x21 解得x3 原方程的解为x3 上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程23(12分)(1)解方程:=0;(2)解不等式组 ,并把所得解集表示在数轴上24某厂按用户的月需求量(件)完成一种产品的生产,其中每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据月份(月)12成本(万元/件)1112需求量(件/月)120100 (1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是

11、否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断【详解】A、EFCD,DEBC,CEAC,故本选项错误;B、EFCD,DEBC,ADDF,故本选项错误;C、EFCD,DEBC,故本选项正确;D、EFCD,DEBC,ADDF,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健2、C【解析】求出

12、正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积,阴影部分的面积,空白部分与阴影部分面积之比是:1,故选C【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型3、B【解析】根据无理数的定义即可判定求解【详解】在3.1415926,中,3.1415926,是有理数,是无理数,共有3个,故选:B【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001,等有这样规律的数4、A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一

13、组数据中出现次数最多的数据叫做众数,以及方差公式S2= (x1-)2+(x2-)2+(xn-)2,分别进行计算可得答案详解:极差:10-8=2,平均数:(82+96+102)10=9,众数为9,方差:S2= (8-9)22+(9-9)26+(10-9)22=0.4,故选A点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法5、B【解析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合故选:B【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标

14、的符号,进而对号入座,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)6、B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案【详解】A不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错误故选B7、A【解析】利用因式分解法解方程即可【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能

15、为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)8、A【解析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b9、B【解析】当腰长是2 c

16、m时,因为2+22,符合三角形三边关系,此时周长是12 cm故选B10、B【解析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案【详解】解:A、因为a30,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2+k中,对称轴为xh,顶点坐标为(h,k)二、填空题(本大题共6个小题,每小题3分,共18分)11、1.1【解析】过点D作DOAH于点O,先证明ABCAOD得出=,再根据已知条件求出A

17、O,则OH=AH-AO=DG.【详解】解:过点D作DOAH于点O,如图:由题意得CBDO,ABCAOD,=,CAB=53,tan53=,tanCAB=,AB=1.74m,CB=1.31m,四边形DGHO为长方形,DO=GH=3.05m,OH=DG,=,则AO=1.1875m,BH=AB=1.75m,AH=3.5m,则OH=AH-AO1.1m,DG1.1m.故答案为1.1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.12、4【解析】过点C作CHAB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA的值,然后利用旋

18、转的性质可判定ACABCB,继而利用相似三角形的对应边成比例的性质可得出BB的值【详解】解:过点C作CHAB于H,在RtABC中,C=90,cosA= ,AC=ABcosA=6,BC=3 ,在RtACH中,AC=6,cosA=,AH=ACcosA=4,由旋转的性质得,AC=AC,BC=BC,ACA是等腰三角形,因此H也是AA中点,AA=2AH=8,又BCB和ACA都为等腰三角形,且顶角ACA和BCB都是旋转角,ACA=BCB,ACABCB,即 ,解得:BB=4.故答案为:4.【点睛】此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出AC

19、ABCB13、k【解析】分k=1及k1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k1时,由1即可得出关于k的一元一次不等式,解之即可得出k的取值范围综上此题得解【详解】当k=1时,原方程为-x+2=1,解得:x=2,k=1符合题意;当k1时,有=-(2k+1)2-4k(k+2)1,解得:k且k1综上:k的取值范围是k故答案为:k【点睛】本题考查了根的判别式以及一元二次方程的定义,分k=1及k1两种情况考虑是解题的关键14、(7+6)【解析】过点C作CEAB,DFAB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在RtAEF中利用DF的长,求得线段A

20、F的长;在RtBCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长【详解】解:如图所示:过点C作CEAB,DFAB,垂足分别为:E,F,坝顶部宽为2m,坝高为6m,DC=EF=2m,EC=DF=6m,=30,BE= (m),背水坡的坡比为1.2:1,解得:AF=5(m),则AB=AF+EF+BE=5+2+6=(7+6)m,故答案为(7+6)m【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解15、x2 x3 【解析】根据分式的意义和二次根式的意义,分别求解【详解】解:根据分式的意义得2-x0,解得x2;根据二次根式的意义得2x-60,

21、解得x3.故答案为: x2, x3.【点睛】数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数16、1【解析】先利用垂径定理得到ODBC,则BE=CE,再证明OE为ABC的中位线得到,入境计算ODOE即可【详解】解:BDCD,ODBC,BECE,而OAOB,OE为ABC的中位线,DEODOE531故答案为1【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.三、解答题(共8题,共72分)17、第二、三季度的平均增长率为20%【解析】设增长率

22、为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)214.4万元建立方程求出其解即可【详解】设该省第二、三季度投资额的平均增长率为x,由题意,得:10(1+x)214.4,解得:x10.220%,x22.2(舍去)答:第二、三季度的平均增长率为20%【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)214.4建立方程是关键18、 (1) 1;(2)【解析】(1)由勾股定理求AB,设O的半径为r,则r=(AC+BC-AB)求解;(2)过G作GPAC,垂足为P,根据CG

23、平分直角ACB可知PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由RtAGPRtABC,利用相似比求x,由OG=CG-CO求OG,在RtODG中,由勾股定理求DG试题解析:(1)在RtABC中,由勾股定理得AB=5,O的半径r=(AC+BC-AB)=(4+3-5)=1;(2)过G作GPAC,垂足为P,设GP=x,由ACB=90,CG平分ACB,得GCP=45,GP=PC=x,RtAGPRtABC,=,解得x=,即GP=,CG=,OG=CG-CO=-=,在RtODG中,DG=.19、(1)AB=2;相等;(2)a=;(3), 【解析】(1)过点B作BNx轴于N,由

24、题意可知AMB为等腰直角三角形,设出点B的坐标为(n,n),根据二次函数得出n的值,然后得出AB的值,因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn4m1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.

25、【详解】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角三角形,ABx轴,易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,(舍去),抛物线的“完美三角形”的斜边相等;(2)抛物线与抛物线的形状相同,抛物线与抛物线的“完美三角形”全等,抛物线的“完美三角形”斜边的长为4,抛物线的“完美三角形”斜边的长为4,B点坐标为(2,2)或(2,-2),(3) 的最大值为-1, , ,抛物线的“完美三角形”斜边长为n,抛物线的“完美三角形”斜边长为n,B点坐标为,代入抛物线,得, (不合题意舍去),20、小军的证明:见解析;小俊的证明:见解析;变式探究见解析;结论运用PG+PH的值为1;迁移

26、拓展(6+2)dm【解析】小军的证明:连接AP,利用面积法即可证得;小俊的证明:过点P作PGCF,先证明四边形PDFG为矩形,再证明PGCCEP,即可得到答案;变式探究小军的证明思路:连接AP,根据SABCSABPSACP,即可得到答案;小俊的证明思路:过点C,作CGDP,先证明四边形CFDG是矩形,再证明CGPCEP即可得到答案;结论运用 过点E作EQBC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BEBF即可得到答案;迁移拓展延长AD,BC交于点F,作BHAF,证明ADEBCE得到FA=FB,设DHx,利用勾股定理求出x得到BH6,再根据ADEBC

27、E90,且M,N分别为AE,BE的中点即可得到答案.【详解】小军的证明:连接AP,如图PDAB,PEAC,CFAB,SABCSABP+SACP,ABCFABPD+ACPE,ABAC,CFPD+PE小俊的证明:过点P作PGCF,如图2,PDAB,CFAB,PGFC,CFDFDGFGP90,四边形PDFG为矩形,DPFG,DPG90,CGP90,PEAC,CEP90,PGCCEP,BDPDPG90,PGAB,GPCB,ABAC,BACB,GPCECP,在PGC和CEP中, PGCCEP,CGPE,CFCG+FGPE+PD;变式探究小军的证明思路:连接AP,如图,PDAB,PEAC,CFAB,SAB

28、CSABPSACP,ABCFABPDACPE,ABAC,CFPDPE;小俊的证明思路:过点C,作CGDP,如图,PDAB,CFAB,CGDP,CFDFDGDGC90,CFGD,DGC90,四边形CFDG是矩形,PEAC,CEP90,CGPCEP,CGDP,ABDP,CGPBDP90,CGAB,GCPB,ABAC,BACB,ACBPCE,GCPECP,在CGP和CEP中, CGPCEP,PGPE,CFDGDPPGDPPE结论运用如图过点E作EQBC,四边形ABCD是矩形,ADBC,CADC90,AD8,CF3,BFBCCFADCF5,由折叠得DFBF,BEFDEF,DF5,C90,DC1, EQ

29、BC,CADC90,EQC90CADC,四边形EQCD是矩形,EQDC1,ADBC,DEFEFB,BEFDEF,BEFEFB,BEBF,由问题情景中的结论可得:PG+PHEQ,PG+PH1PG+PH的值为1迁移拓展延长AD,BC交于点F,作BHAF,如图,ADCEDEBC, EDAD,ECCB,ADEBCE90,ADEBCE,ACBE,FAFB,由问题情景中的结论可得:ED+ECBH,设DHx,AHAD+DH3+x,BHAF,BHA90,BH2BD2DH2AB2AH2,AB2,AD3,BD,()2x2(2)2(3+x)2, x1,BH2BD2DH237136,BH6,ED+EC6,ADEBCE

30、90,且M,N分别为AE,BE的中点,DMEMAE,CNENBE, DEM与CEN的周长之和DE+DM+EM+CN+EN+ECDE+AE+BE+ECDE+AB+ECDE+EC+AB6+2,DEM与CEN的周长之和(6+2)dm【点睛】此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.21、(1)y=5x+350;(2)w=5x2+450x7000(30x40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元【

31、解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题试题解析:解:(1)由题意可得:y=200(x30)5=5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=5x+350;(2)由题意可得,w=(x20)(5x+ 350)=5x2+450x7000(30x70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=

32、5x2+450x7000(30x40);(3)w=5x2+450x7000=5(x45)2+1二次项系数50,x=45时,w取得最大值,最大值为1答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值22、(1)错误步骤在第步(2)x4.【解析】(1)第步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可【详解】解:(1)方程两边同乘6,得3x2(x1)6 去

33、括号,得3x2x+26 错误步骤在第步(2)方程两边同乘6,得3x2(x1)6去括号,得3x2x+26合并同类项,得x+26解得x4原方程的解为x4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因23、(1)x=;(2)x3;数轴见解析;【解析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可【详解】解:(1)方程两边都乘以(12x)(x+2)得:x+2(12x)=0,解得: 检验:当时,(12x)(x+2)0,所以是原方程的解,所以原方程的解是;(2) ,解不等式得:x1,解不等式

34、得:x3,不等式组的解集为x3,在数轴上表示为:【点睛】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键24、 (1),不可能;(2)不存在;(3)1或11.【解析】试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,

35、判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.试题解析:(1)由题意设,由表中数据,得解得.由题意,若,则.x0,.不可能.(2)将n=1,x=120代入,得120=2-2k+9k+27.解得k=13.将n=2,x=100代入也符合.k=13.由题意,得18=6+,求得x=50.50=,即.,方程无实数根.不存在.(3)第m个月的利润为w=;第(m+1)个月的利润为W=.若WW,W-W=48(6-m),m取最小1,W-W=240最大.若WW,W-W=48(m-6),m+112,m取最大11,W-W=240最大.m=1或11.考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁