《四川省岳池县联考2023年中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省岳池县联考2023年中考四模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1某小组做“用频率估计概率”的实验时,统计了某一结果出现
2、的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是()A在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B掷一枚质地均匀的正六面体骰子,向上一面的点数是4C一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上2如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A(3,1)B(-4,1)C(1,-1)D(-3,1)3图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是()A0B
3、1CD4在平面直角坐标系中,将点P(4,3)绕原点旋转90得到P1,则P1的坐标为()A(3,4)或(3,4)B(4,3)C(4,3)或(4,3)D(3,4)5如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D46世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A7.6109B7.6108C7.6109D7.61087若与 互为相反数,则x的值是()A1B2C3D48抛物线ymx28x8和x轴有交点,则m的取值范围是()Am2Bm2C
4、m2且m0Dm2且m09下列计算正确的是()A(a)aBa+aaC(3a)(2a)6aD3aa310如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在平行四边形 ABCD 中,AB6,AD9,BAD 的平分线交BC 于点 E,交 DC 的延长线于点 F,BGAE,垂足为 G,BG4,则CEF 的周长为_12请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= 13在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同小明发现,摸到白色乒乓球的频率稳
5、定在60%左右,则箱内黄色乒乓球的个数很可能是_14已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_15如图,AC是以AB为直径的O的弦,点D是O上的一点,过点D作O的切线交直线AC于点E,AD平分BAE,若AB=10,DE=3,则AE的长为_16如图,P是O的直径AB延长线上一点,PC切O于点C,PC=6,BC:AC=1:2,则AB的长为_三、解答题(共8题,共72分)17(8分)如图,把EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EPFP4,EF4,BAD60,且AB4(1)求EPF的大小;(2)若AP=6,求AEAF的值.18(8分)如
6、图,以40m/s的速度将小球沿与地面成30角的方向击出时,小球的飞行路线是一条抛物线如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h10t5t1小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?19(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一20.04二100.2三14b四a0.3
7、2五80.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有 名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 20(8分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于m,则称m为这个函数的反向值在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离特别地,当函数只有一个反向值时,其反向距离n为零例如,图中的函数有4,1两个反向值,其反向距离n等于1(1)分别判断函数yx+1,y,yx2有没有反向值?如果有,直接写出其反向距离;(2)对于函数
8、yx2b2x,若其反向距离为零,求b的值;若1b3,求其反向距离n的取值范围;(3)若函数y请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围21(8分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D求a,b的值及反比例函数的解析式;若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由22(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅
9、在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率23(12分)如图,在菱形ABCD中,作于E,BFCD于F,求证:24如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.参考答案一、选择题(共
10、10小题,每小题3分,共30分)1、B【解析】根据统计图可知,试验结果在0.17附近波动,即其概率P0.17,计算四个选项的概率,约为0.17者即为正确答案【详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是 ,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是 ,故D选项错误,故选B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率频率=所求情况数与总情况数之比熟练掌握概率公式是
11、解题关键2、B【解析】作出图形,结合图形进行分析可得.【详解】如图所示:以AC为对角线,可以画出AFCB,F(-3,1);以AB为对角线,可以画出ACBE,E(1,-1);以BC为对角线,可以画出ACDB,D(3,1),故选B.3、C【解析】试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键由正方形的性质和勾股定理求出AB的长,即可得出结果解:连接AB,如图所示:根据题意得:ACB=90,由勾股定理得:AB=;故选C考点:1.勾股定理;2.展开图折叠成几何体4、A【解析】分顺时针旋转,逆时针旋转两种情形求解即可.【
12、详解】解:如图,分两种情形旋转可得P(3,4),P(3,4),故选A.【点睛】本题考查坐标与图形变换旋转,解题的关键是利用空间想象能力.5、B【解析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答6、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解
13、:将0.0000000076用科学计数法表示为.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a,其中,n为由原数左边起第一个不为0的数字前面的0的个数所决定.7、D【解析】由题意得+=0,去分母3x+4(1-x)=0,解得x=4.故选D.8、C【解析】根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:抛物线和轴有交点, ,解得:且故选【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键9、A【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性
14、质,合并同类项的法则,对各选项分析判断后利用排除法求解【详解】A(a2)3=a23=a6,故本选项正确;Ba2+a2=2a2,故本选项错误;C(3a)(2a)2=(3a)(4a2)=12a1+2=12a3,故本选项错误;D3aa=2a,故本选项错误故选A【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键10、B【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称从物体的前面向后面投射所得的视图称主视图(正视图)能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图能反映物体的上面形状;从物体的左面向右面投射所得的视图称
15、左视图能反映物体的左面形状故选B考点:三视图二、填空题(本大题共6个小题,每小题3分,共18分)11、8【解析】试题解析:在ABCD中,AB=CD=6,AD=BC=9,BAD的平分线交BC于点E,BAF=DAF,ABDF,BAF=F,F=DAF,ADF是等腰三角形,AD=DF=9;ADBC,EFC是等腰三角形,且FC=CEEC=FC=9-6=3,AB=BE在ABG中,BGAE,AB=6,BG=4可得:AG=2,又BGAE,AE=2AG=4,ABE的周长等于16,又ABCD,CEFBEA,相似比为1:2,CEF的周长为812、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b
16、2【解析】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b213、20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可【详解】设黄球的个数为x个,共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,60%,解得x30,布袋中白色球的个数很可
17、能是503020(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.14、20【解析】利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【详解】底面直径为8,底面半径=4,底面周长=8,由勾股定理得,母线长=5,故圆锥的侧面积=85=20,故答案为:20【点睛】本题主要考查了圆锥的侧面积的计算方法解题的关键是熟记圆锥的侧面展开扇形的面积计算方法15、1或9【解析】(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示ODOA,OADODA,AD平分BAE,OADODADAC,OD/AE,DE是圆的切线,DEOD,ODE
18、=E=90o,四边形ODEF是矩形,OFDE,EFOD5,又OFAC,AF,AEAF+EF5+49.(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示同(1)可得:EFOD5,OFDE3,在直角三角形AOF中,AF,AEEFAF541.16、1【解析】PC切O于点C,则PCB=A,P=P,PCBPAC,,BP=PC=3,PC2=PBPA,即36=3PA,PA=12AB=12-3=1故答案是:1.三、解答题(共8题,共72分)17、(1)EPF120;(2)AEAF6.【解析】试题分析: (1)过点P作PGEF于G,解直角三角形即可得到结论;(2)如图2,过点P作PMAB于M,P
19、NAD于N,证明ABCADC,RtPMERtPNF,问题即可得证.试题解析:(1)如图1,过点P作PGEF于G,PE=PF,FG=EG=EF=2,FPG=EPGEPF,在FPG中,sinFPG= ,FPG=60,EPF=2FPG=120;(2)如图2,过点P作PMAB于M,PNAD于N,四边形ABCD是菱形,AD=AB,DC=BC,DAC=BAC,PM=PN,在RtPME于RtPNF中, ,RtPMERtPNF,FN=EM,在RtPMA中,PMA=90,PAM= DAB=30,AM=APcos30=3 ,同理AN=3 ,AE+AF=(AM-EM)+(AN+NF)=6.【点睛】运用了菱形的性质,
20、解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键18、(1)小球飞行时间是1s时,小球最高为10m;(1) 1t3.【解析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值【详解】(1)h5t1+10t5(t1)1+10,当t1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:1510t5t1,解得:t11,t13,由图象得:当1t3时,h15,则小球飞行时间1t3时,飞行高度不低于15m【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练
21、掌握二次函数的性质是解题的关键19、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)20.04=50(2)500.32=16 1450=0.28(3)(4)(0.32+0.16)100%=48%考点:频数分布直方图20、(1)y有反向值,反向距离为2;yx2有反向值,反向距离是1;(2)b1;0n8;(3)当m2或m2时
22、,n2,当2m2时,n2【解析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)根据题意可以求得相应的b的值;根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题【详解】(1)由题意可得,当mm+1时,该方程无解,故函数yx+1没有反向值,当m时,m1,n1(1)2,故y有反向值,反向距离为2,当mm2,得m0或m1,n0(1)1,故yx2有反向值,反向距离是1;(2)令mm2b2m,解得,m0或mb21,反向距离为零,|b210|0,解得,b1;令mm2b2m,解得,m0或mb21,n|b210|
23、b21|,1b3,0n8;(3)y,当xm时,mm23m,得m0或m2,n202,m2或m2;当xm时,mm23m,解得,m0或m2,n0(2)2,2m2,由上可得,当m2或m2时,n2,当2m2时,n2【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题21、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP3|n1|,SBDP1|3n|,进而建立方
24、程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k133,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC|xPxA|3|n1|,SBDPBD|xBxP|1|3n|,SACPSBDP,3|n1|1|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0
25、),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键22、(1)不可能事件;(2).【解析】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根
26、据题意画出树状图,再由概率公式求解即可试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为考点:列表法与树状图法23、见解析【解析】由菱形的性质可得,然后根据角角边判定,进而得到.【详解】证明:菱形ABCD,在与中,【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.24、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a
27、,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标详解:(1)依题意得:,解得:,抛物线的解析式为.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题