《2023届四川省岳池县重点名校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省岳池县重点名校中考二模数学试题含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1下列计算中,正确的是( )ABCD2的值是A3B3C9D813下列实数中是无理数的是()AB22C5.Dsin454如图,等边ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿BDE匀速运动,点M
2、,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,AMN的面积为y,能大致刻画y与x的函数关系的图象是()ABCD5某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A B C D6已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )A20cm2B20cm2C10cm2D5cm27下列现象,能说明“线动成面”的是()A天空划过一道流星B汽车雨刷在挡风玻璃上刷出的痕迹C抛出一块小石子,石子在空中飞行的路线D旋转一扇门,门在空中运动的痕迹8如图,A、B、C、D四个点均在O上,AOD=50,AODC,则B的度数为()A50 B55
3、 C60 D659将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )ABCD10如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D二、填空题(本大题共6个小题,每小题3分,共18分)11已知x1,x2是方程x2+6x+30的两实数根,则的值为_12如图,抛物线yax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线MPN上移动,它们的坐标分别为M(1,4)、P(3,4)、N(3,1)若在抛物线移动过程中,点A横坐标的最小值为3,则ab+c的最小值是_13圆锥底面圆的半径为3,高为4,它的
4、侧面积等于_(结果保留)14某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为_15如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_16如图,半圆O的直径AB=2,弦CDAB,COD=90,则图中阴影部分的面积为_三、解答题(共8题,共72分)17(8分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线yx22x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线yx22x+3与直线yx1的“
5、亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值18(8分)如图,MON的边OM上有两点A、B在MON的内部求作一点P,使得点P到MON的两边的距离相等,且PAB的周长最小(保留作图痕迹,不写作法)19(8分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45若该楼高为16.65m,小王的眼睛离地面1.65m,大型标
6、牌的上端与楼房的顶端平齐求此标牌上端与下端之间的距离(1.732,结果精确到0.1m)20(8分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成21(8分)如图,ABCD的对角线AC,BD相交于点OE,F是AC上的两点,并且AE=CF,连接DE,BF(1)求证:DOEBOF;(2)若BD=EF,连接DE,BF判断四边形EBFD的形状,并说明理由22(10分)计算:2-1+20160-3tan30+|-|23(12分)小丽和哥哥小明分别从家和图书馆同时出发,沿同
7、一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间24如图,在菱形ABCD中,对角线AC与BD交于点O过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据积的乘方、合并同类项、同底数幂的除法以及
8、幂的乘方进行计算即可【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键2、C【解析】试题解析: 的值是3 故选C.3、D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D4、A【解析】根据题意,将运动过程分成两段分段讨论求出解析式即可【详解】BD=2,B=60,点D到AB距离为, 当0x2时,y=;
9、当2x4时,y=. 根据函数解析式,A符合条件.故选A【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式5、B【解析】从几何体的正面看可得下图,故选B6、C【解析】圆锥的侧面积=底面周长母线长2,把相应数值代入,圆锥的侧面积=2252=10故答案为C7、B【解析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:A、天空划过一道流星说明“点动成线”,故本选项错误.B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,故本选项正确.C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,故本选项错误.D、旋转一扇门,门在
10、空中运动的痕迹说明“面动成体”,故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.8、D【解析】试题分析:连接OC,根据平行可得:ODC=AOD=50,则DOC=80,则AOC=130,根据同弧所对的圆周角等于圆心角度数的一半可得:B=1302=65.考点:圆的基本性质9、A【解析】根据二次函数的平移规律即可得出【详解】解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为故答案为:A【点睛】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律10、D【解析】根据同弧或等弧所对的圆周
11、角相等可知BED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DAB=DEB,tanDEB= tanDAB=,故选D【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:,是方程的两实数根,由韦达定理,知,=1,即的值是1故答案为1考点:根与系数的关系12、1【解析】由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x
12、+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变13、15【解析】根据圆的面积公式、扇形的面积公式计算即可【详解】圆锥的母线长=5,,圆锥底面圆的面积=9圆锥底面圆的周长=23=6,即扇形的弧长为6,圆锥的侧面展开图的面积=65=15,【点睛】本题考查的是
13、扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.14、【解析】随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可【详解】抬头看信号灯时,是绿灯的概率为故答案为:【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数(2)P(必然事件)=1(3)P(不可能事件)=215、12【解析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出线段长度解答【详解】根
14、据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型16、 【解析】解:弦CDAB,SACD=SOCD,S阴影=S扇形COD=故答案为三、解答题(共8题,共72分)17、(1)2;(2)不同意他的看法,理由详见解析;(3)c1【解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2
15、)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=x22x+3与抛物线的“亲近距离”,所以,然后解方程即可【详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与x轴的“亲近距
16、离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线y=x22x+3与直线y=x1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最小值为
17、c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键18、详见解析【解析】作MON的角平分线OT,在ON上截取OA,使得OAOA,连接BA交OT于点P,点P即为所求【详解】解:如图,点P即为所求【点睛】本题主要考查作图-复杂作图,利用了角平分线的性质,难点在于利用轴对称求最短路线的问题19、大型标牌上端与下端之间的距离约为3.5m【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的
18、距离试题解析:设AB,CD 的延长线相交于点E,CBE=45,CEAE,CE=BE,CE=16.651.65=15,BE=15,而AE=AB+BE=1DAE=30,DE11.54,CD=CEDE=1511.543.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m20、 (1) 现在平均每天生产1台机器(2) 现在比原计划提前5天完成【解析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(
19、1)设现在平均每天生产x台机器,则原计划可生产(x-50)台依题意得:,解得:x=1检验x=1是原分式方程的解.(2)由题意得=20-15=5(天)现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.21、(2)证明见解析;(2)四边形EBFD是矩形理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,AE=CF,OE=OF,在DEO和BOF中,DOEBOF(2)结论:四边形EBFD是矩形理
20、由:OD=OB,OE=OF,四边形EBFD是平行四边形,BD=EF,四边形EBFD是矩形点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型22、 【解析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;【详解】原式= = =【点睛】此题考查实数的混合运算此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算23、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用
21、的时间为分【解析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可【详解】解:(1)根据题意可得小明的速度为:4500(10+5)300(米/分),30051500(米),两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(45001500)(3510)120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x10)4500500,解得x答:小丽离距离图书馆500m时所用的时间为分【点睛】本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键24、
22、(1)证明见解析;(2)1【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答【详解】(1)四边形ABCD是菱形,ACBD,COD=90CEOD,DEOC,四边形OCED是平行四边形,又COD=90,平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2四边形ABCD是菱形,AC=2OC=1,BD=2OD=2,菱形ABCD的面积为:ACBD=12=1,故答案为1【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.