《四川省成都市简阳市2023届中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都市简阳市2023届中考联考数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图图形中是中心对称图形的是()ABCD2如图,在直角坐标系xOy中,若抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域(不包括直线y2和x轴),则l与直线y
2、1交点的个数是()A0个B1个或2个C0个、1个或2个D只有1个3如图,已知ABCD,1=115,2=65,则C等于()A40B45C50D604已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方下列结论:;其中正确结论的个数是( )个A4个B3个C2个D1个5下列运算正确的是( )Aa3a2=a6B(2a)3=6a3C(ab)2=a2b2D3a2a2=2a26反比例函数y=的图象与直线y=x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )At Bt Ct Dt7纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该
3、种花粉的直径为()A米B米C米D米8已知:如图,在扇形中,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )ABCD9下列几何体中,主视图和左视图都是矩形的是()ABCD10如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数图象如图2,则下列结论错误的是( )AAE=6cmBC当0t10时,D当t=12s时,PBQ是等腰三角形11在中,则的值是( )ABCD12下列四个式子中,正确的是
4、()A =9B =6C()2=5D=4二、填空题:(本大题共6个小题,每小题4分,共24分)13若点(,1)与(2,b)关于原点对称,则=_14如图,在ABC中,点D是AB边上的一点,若ACDB,AD1,AC2,ADC的面积为1,则BCD的面积为_15如图,ABC中,AB=AC,D是AB上的一点,且AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBCF的面积为_16如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是_17圆锥的底面半径是4cm,母线长是5c
5、m,则圆锥的侧面积等于_cm118我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中ab)叫做互为交换函数如y=3x2+4x与y=4x2+3x是互为交换函数如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?20(6分)已如:O与O上的一点A(1)求作:O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)(2)连
6、接CE,BF,判断四边形BCEF是否为矩形,并说明理由21(6分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难从四份听力材料中,任选一份是难的听力材料的概率是 用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率22(8分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30,已知测角
7、仪高AB为1.5米,求拉线CE的长(结果保留根号)23(8分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CDx轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0)求该抛物线的解析式;求梯形COBD的面积24(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的
8、图形是中心对称图形的概率25(10分)如图,已知等腰三角形ABC的底角为30,以BC为直径的O与底边AB交于点D,过D作DEAC,垂足为E证明:DE为O的切线;连接OE,若BC4,求OEC的面积26(12分)如图,在ABC中,AB=AC,点,在边上,求证:27(12分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小
9、题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.【点睛】本题考察了中心对称图形的含义.2、C【解析】根据题意,利用分类讨论的数学思想可以得到l与直线y1交点的个数,从而可以解答本题【详解】抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域,开口向下,当顶点D位于直线y1下方时,则l与直线y1交点个数为0,当顶点D位于直线y1上时,则l与直线y1交点个数为1,当顶点D位于直线y1上方
10、时,则l与直线y1交点个数为2,故选C【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答3、C【解析】分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得C的度数详解:ABCD, 故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和. 4、B【解析】分析:根据已知画出图象,把x=2代入得:4a2b+c=0,把x=1代入得:y=ab+c0,根据不等式的两边都乘以a(a2a,由4a2b+c=0得而0c0.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(2,0)、(x1
11、,0),且1x10,如图A点,错误;(2,0)、(x1,0),且1x1,取符合条件1x12的任何一个x1,2x12,由一元二次方程根与系数的关系知 不等式的两边都乘以a(a2a, 2a+c0,正确;由4a2b+c=0得 而0c2, 12ab0,正确.所以三项正确故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.5、D【解析】试题分析:根据同底数幂相乘,底数不变指数相加求解求解;根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;根据完全平方公式求解;根据合并同类项法则求解解:A、a3a2=a3+2=a5
12、,故A错误;B、(2a)3=8a3,故B错误;C、(ab)2=a22ab+b2,故C错误;D、3a2a2=2a2,故D正确故选D点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键6、B【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x22x+16t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解【详解】由题意可得:x+2=,所以x22x+16t=0,两函数图象有两个交点,且两交点横坐标的积为负数, 解不等式组,得t故选:B点睛:此题主要考查了反比例函数与一次函数的交点
13、问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.7、C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】35000纳米=3500010-9米=3.510-5米故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8、D【解析】如图,连接OD根据折叠的性质、圆的性质推知ODB是等边三角形,则易求AOD=110-DOB=50;然后由弧长公
14、式弧长的公式 来求 的长【详解】解:如图,连接OD解:如图,连接OD根据折叠的性质知,OB=DB又OD=OB,OD=OB=DB,即ODB是等边三角形,DOB=60AOB=110,AOD=AOB-DOB=50,的长为 =5故选D【点睛】本题考查了弧长的计算,翻折变换(折叠问题)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等所以由折叠的性质推知ODB是等边三角形是解答此题的关键之处9、C【解析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形依此即可求解【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,
15、故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.10、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=1(3)结论C正确,理由如下:如图,过点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设
16、为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不是等腰三角形,即此时PBQ不是等腰三角形故选D11、D【解析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解【详解】C=90,BC=1,AB=4,故选:D【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比12、D【解析】A、表示81的算术平方根;B、先算-6的平方,然后再求的值;C、利用完全平方公式计算即可;D、=【详解】A、9,故A错误;B、-=-6,故B错误;C、()2=2+2+3=5+2,故C错误;D、=4,故D正确
17、故选D【点睛】本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】点(a,1)与(2,b)关于原点对称,b=1,a=2,=故答案为考点:关于原点对称的点的坐标14、1【解析】由ACD=B结合公共角A=A,即可证出ACDABC,根据相似三角形的性质可得出()2,结合ADC的面积为1,即可求出BCD的面积【详解】ACDB,DACCAB,ACDABC,()2()2,SABC4SACD4,SBCDSABCSACD411故答案为1【点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形
18、的判定与性质.15、2【解析】解:如图,过D点作DGAC,垂足为G,过A点作AHBC,垂足为H,AB=AC,点E为BD的中点,且AD=AB,设BE=DE=x,则AD=AF=1xDGAC,EFAC,DGEF,即,解得DFBC,ADFABC,即,解得DF=1又DFBC,DFG=C,RtDFGRtACH,即,解得在RtABH中,由勾股定理,得又ADFABC,故答案为:216、【解析】因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|dR+r,求得圆D与圆O的半径代入计算即可.【详解】连接OA、OD,过O点作ONAE,OMAF.AN=AE=1,AM=AF
19、=2,MD=AD-AM=3四边形ABCD是矩形BAD=ANO=AMO=90,四边形OMAN是矩形OM=AN=1OA=,OD=以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.17、10【解析】解:根据圆锥的侧面积公式可得这个圆锥的侧面积=145=10(cm1)故答案为:10【点睛】本题考查圆锥的计算18、1【解析】根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题【详解】由题意函数y=1x1+bx的交换函数为y=bx1+1x y=1x1+bx=,y=bx1+1x=,函数
20、y=1x1+bx与它的交换函数图象顶点关于x轴对称,=且,解得:b=1故答案为1【点睛】本题考查了二次函数的性质理解交换函数的意义是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(1004x)米;然后根据矩形的面积公式列出方程试题解析:设AB的长度为x米,则BC的长度为(1004x)米 根据题意得 (1004x)x=400,解得 x1=20,x2=1 则1004x=20或1004x=2 221, x2=1舍去 即AB=20,BC=20考点:一元二次方程
21、的应用20、(1)答案见解析;(2)证明见解析.【解析】(1)如图,在O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,则判断BE为直径,所以BFE=BCE=90,同理可得FBC=CEF=90,然后判断四边形BCEF为矩形【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形理由如下:连接BE,如图,六边形ABCDEF为正六边形,AB=BC=CD=DE=EF=FA,BE为直径,BFE=BCE=90,同理可得FBC=CEF=90,四边形BCEF为矩形【点睛】本题考查了作图-复杂
22、作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了矩形的判定与正六边形的性质21、(1);(2).【解析】【分析】(1)依据A、B、C、D四份听力材料的难易程度分别是易、中、难、难,即可得到从四份听力材料中,任选一份是难的听力材料的概率是;(2)利用树状图列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,即可得到两份材料都是难的一套模拟试卷的概率【详解】(1)A、B、C、D四份听力材料的难易程度分别是易、中、难、难,从四份听力材料
23、中,任选一份是难的听力材料的概率是=,故答案为;(2)树状图如下:P(两份材料都是难)=【点睛】本题主要考查了利用树状图或列表法求概率,当有两个元素时,可用树形图列举,也可以列表列举随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数22、CE的长为(4+)米【解析】由题意可先过点A作AHCD于H在RtACH中,可求出CH,进而CD=CH+HD=CH+AB,再在RtCED中,求出CE的长【详解】过点A作AHCD,垂足为H,由题意可知四边形ABDH为矩形,CAH=30,AB=DH=1.5,BD=AH=6,在RtACH中,tanCAH=,CH=AHtanCAH,CH=AHtan
24、CAH=6tan30=6=2(米),DH=1.5,CD=2+1.5,在RtCDE中,CED=60,sinCED=,CE=(4+)(米),答:拉线CE的长为(4+)米考点:解直角三角形的应用-仰角俯角问题23、(1)(2)【解析】(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,根据梯形面积公式即可求出梯形COBD的面积【详解】(1)将A(1,0)代入中,得:0=4a+4,解得:a=1该抛物线解析式为(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,抛物线的对称轴为直
25、线x=1,CD=1A(1,0),B(2,0),即OB=224、(1);(2).【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解【详解】(1)正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比25、 (1
26、)证明见解析;(2)【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的O,可得CDAB,又由等腰三角形ABC的底角为30,可得AD=BD,即可证得ODAC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得BOD,ODE,ADE以及ABC的面积,继而求得答案试题解析:(1)证明:连接OD,CD,BC为O直径,BDC=90,即CDAB,ABC是等腰三角形,AD=BD,OB=OC,OD是ABC的中位线,ODAC,DEAC,ODDE,D点在O上,DE为O的切线;(2)解:A=B=30,BC=4,CD=BC=2,BD=BCcos30=2,AD=BD=2,AB=2
27、BD=4,SABC=ABCD=42=4,DEAC,DE=AD=2=,AE=ADcos30=3,SODE=ODDE=2=,SADE=AEDE=3=,SBOD=SBCD=SABC=4=,SOEC=SABC-SBOD-SODE-SADE=4-=26、见解析【解析】试题分析:证明ABEACD 即可.试题解析:法1:AB=AC,B=C,AD=CE,ADE=AED,ABEACD,BE=CD ,BD=CE,法2:如图,作AFBC于F,AB=AC,BF=CF,AD=AE,DF=EF,BFDF=CFEF,即BD=CE.27、(1)S=3x1+14x,x 8;(1) 5m;(3)46.67m1【解析】(1)设花圃
28、宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【详解】解:(1)根据题意,得Sx(143x),即所求的函数解析式为:S3x1+14x,又0143x10,;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),3x1+14x2整理,得x18x+150,解得x3或5,当x3时,长1491510不成立,当x5时,长1415910成立,AB长为5m;(3)S14x3x13(x4)1+48墙的最大可用长度为10m,0143x10,对称轴x4,开口向下,当xm,有最大面积的花圃【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.