《山东省日照市实验二中学2023届中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省日照市实验二中学2023届中考考前最后一卷数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是几何体的三视图,该几何体是( )A圆锥B圆柱C三棱柱D三棱锥2如图,在ABCD中,用直尺和圆规
2、作BAD的平分线AG交BC于点E若BF=8,AB=5,则AE的长为( )A5B6C8D123在实数 ,0.21, , ,0.20202中,无理数的个数为()A1B2C3D44如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )ABCD5有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()Aa4Bbd0C|a|b|Db+c06有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A方差B中位数C众数D平均数7如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()ABCD8已知xa=
3、2,xb=3,则x3a2b等于()AB1C17D729在下列二次函数中,其图象的对称轴为的是ABCD10下列各点中,在二次函数的图象上的是( )ABCD11如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D12如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13竖直上抛的小球离地面的高度 h(米)与时间 t(
4、秒)的函数关系式为 h2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第_秒时离地面最高14如图,已知函数yx+2的图象与函数y(k0)的图象交于A、B两点,连接BO并延长交函数y(k0)的图象于点C,连接AC,若ABC的面积为1则k的值为_15正八边形的中心角为_度16如图,RtABC中,若C=90,BC=4,tanA=,则AB=_17如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将AEF沿EF折叠,当折叠后点A的对应点A恰好落在BC的垂直平分线上时,折痕EF的长为_18一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从
5、中任意摸出一个球,则摸出的是红球的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,已知一次函数(k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D若OA=OB=OD=1(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式20(6分)如图,ABD是O的内接三角形,E是弦BD的中点,点C是O外一点且DBCA,连接OE延长与圆相交于点F,与BC相交于点C求证:BC是O的切线;若O的半径为6,BC8,求弦BD的长21(6分)如图1,2分别是某款篮球架的实物图与示意
6、图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角FHE=60,求篮框D到地面的距离(精确到0.01米).(参考数据:cos750.2588, sin750.9659,tan753.732,) 22(8分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF(1)判断AF与O的位置关系并说明理由;(2)若O的半径为4,AF=3,求AC的长23(8分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上
7、,AE = AF求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM判断四边形AEMF是什么特殊四边形?并证明你的结论24(10分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标建筑面积7200平方米,为我国西北第一高阁秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜
8、面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米已知ABBM,EDBM,GFBM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度25(10分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字放回后洗匀,再从中抽取一张卡片
9、,记录下数字请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率26(12分)已知关于x,y的二元一次方程组的解为,求a、b的值27(12分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图ABC笔试859590口试 8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比
10、例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选(从A、B、C、选择一个填空)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案详解:几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又俯视图是一个三角形,故该几何体是一个三棱柱,故选C点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定2、B【解析
11、】试题分析:由基本作图得到AB=AF,AG平分BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AEBF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1故选B考点:1、作图基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质3、C【解析】在实数,0.21, , , ,0.20202中,根据无理数的定义可得其中无理数有,共三个故选C4、B【解析】先证明ABDEBD,从而可得AD=DE,然后先求得AEC的面积,继而可得到CDE的面积.【详解】BD平分ABC,ABD=EBD,AEBD,ADB=EDB=90,又BD=BD,ABDEBD,AD=ED,的面积为1,S
12、AEC=SABC=,又AD=ED,SCDE= SAEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.5、C【解析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案【详解】解:由数轴上点的位置,得a4b0c1dA、a4,故A不符合题意;B、bd0,故B不符合题意;C、|a|4,|b|2,|a|b|,故C符合题意;D、b+c0,故D不符合题意;故选:C【点睛】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键6、A【解析】试题分析:方差是用来衡量一组数据波动大
13、小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差7、C【解析】由正方形的性质知DG=CG-CD=2、ADGF,据此证ADMFGM得 , 求出GM的长,再利用勾股定理求解可得答案【详解】解:四边形ABCD和四边形CEFG是正方形,AD=CD=BC=1、CE=CG=GF=3,ADM=G=90,DG=CG-CD=2,ADGF,则ADMFGM,即 ,解得:GM= ,FM= = = ,故选:C【点睛】本题主要考查相似三角形的判
14、定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点8、A【解析】xa=2,xb=3,x3a2b=(xa)3(xb)2=89= ,故选A.9、A【解析】y=(x+2)2的对称轴为x=2,A正确;y=2x22的对称轴为x=0,B错误;y=2x22的对称轴为x=0,C错误;y=2(x2)2的对称轴为x=2,D错误故选A110、D【解析】将各选项的点逐一代入即可判断【详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点在二次函数的图象;故答案为:D【点睛】本题考查了判断一个点是否在二次函
15、数图象上,解题的关键是将点代入函数解析式11、D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtABE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D12、B【解析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,
16、即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t0时,S0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、.【解析】首先根据题意得出m的值,进而求出t的值即可求得答案【详解】竖直上抛的小球离地面的高度 h(米)
17、与时间 t(秒)的函数关系式为 h2t2+mt+,小球经过秒落地,t时,h0,则02()2+m+,解得:m,当t时,h最大,故答案为:【点睛】本题考查了二次函数的应用,正确得出m的值是解题关键14、3【解析】连接OA根据反比例函数的对称性可得OB=OC,那么SOAB=SOAC=SABC=2求出直线y=x+2与y轴交点D的坐标设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据SOAB=2,得出a-b=2根据SOAC=2,得出-a-b=2,与联立,求出a、b的值,即可求解【详解】如图,连接OA由题意,可得OB=OC,SOAB=SOAC=SABC=2设直线y=x+2与y轴交于点D,则
18、D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),SOAB=2(a-b)=2,a-b=2 过A点作AMx轴于点M,过C点作CNx轴于点N,则SOAM=SOCN=k,SOAC=SOAM+S梯形AMNC-SOCN=S梯形AMNC=2,(-b-2+a+2)(-b-a)=2,将代入,得-a-b=2 ,+,得-2b=6,b=-3,-,得2a=2,a=1,A(1,3),k=13=3故答案为3【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中根据反比例函数的对称性得出O
19、B=OC是解题的突破口15、45【解析】运用正n边形的中心角的计算公式计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为,故答案为45.【点睛】本题考查了正n边形中心角的计算.16、1【解析】在RtABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出【详解】解:RtABC中,BC=4,tanA= 则 故答案为1【点睛】考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.17、4或4.【解析】当AFAD时,由折叠的性质得到AE=AE=2,AF=AF,FAE=A=90,过E作EHMN于H,由矩形的性质得到MH=AE=2,根据
20、勾股定理得到AH=,根据勾股定理列方程即可得到结论;当AFAD时,由折叠的性质得到AE=AE=2,AF=AF,FAE=A=90,过A作HGBC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论【详解】当AFAD时,如图1,将AEF沿EF折叠,当折叠后点A的对应点A恰好落在BC的垂直平分线上,则AE=AE=2,AF=AF,FAE=A=90,设MN是BC的垂直平分线,则AM=AD=3,过E作EHMN于H,则四边形AEHM是矩形, MH=AE=2,AH=,AM=,MF2+AM2=AF2,(3-AF)2+()2=AF2,AF=2,EF=4;当AFAD时,如图
21、2,将AEF沿EF折叠,当折叠后点A的对应点A恰好落在BC的垂直平分线上,则AE=AE=2,AF=AF,FAE=A=90,设MN是BC的垂直平分线,过A作HGBC交AB于G,交CD于H,则四边形AGHD是矩形,DH=AG,HG=AD=6,AH=AG=HG=3,EG=,DH=AG=AE+EG=3,AF=6,EF=4,综上所述,折痕EF的长为4或4,故答案为:4或4【点睛】本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键18、【解析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:由于共有8个球,其中红球有5
22、个,则从袋子中随机摸出一个球,摸出红球的概率是故答案为【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)A(1,0),B(0,1),D(1,0)(2)一次函数的解析式为 反比例函数的解析式为【解析】解:(1)OA=OB=OD=1,点A、B、D的坐标分别为A(1,0),B(0,1),D(1,0)。(2)点A、B在一次函数(k0)的图象上,解得。一次函数的解析式为。点C在一次函数y=x+1的图象上,且CDx轴,点C的坐标为(1,
23、2)。又点C在反比例函数(m0)的图象上,m=12=2。反比例函数的解析式为。(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。20、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OEBD, ,再由圆周角定理可得 ,从而得到 OBE DBC90,即 ,命题得证.(2)由勾股定理求出OC,再由OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB.
24、E是弦BD的中点, BEDE,OE BD, BOE A, OBE BOE90. DBC A, BOE DBC, OBE DBC90, OBC90,即BCOB, BC是 O的切线(2)解: OB6,BC8,BCOB, , , ,.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.21、3.05米.【解析】延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan75=0.603.732=2.2392,GM=AB=2.2392,在RtAGF中,FA
25、G=FHD=60,sinFAG=,sin60=,FG=2.165,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米考点:解直角三角形的应用22、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90AF为圆O的切线,即AF与O的位置关系是相切(2)AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根
26、据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90,证出OAF=90,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90,OFBC,AEO=90,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90,OAF=90,FAOA,AF是O的切线;(2)
27、O的半径为4,AF=3,OAF=90,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,34=1AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质23、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】(1)求简单的线段相等,可证线段所在的三角形全等,即证ABEADF;(2)由于四边形ABCD是正方形,易得ECO=FCO=45,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边
28、形是菱形,即可判定四边形AEMF是菱形【详解】(1)证明:四边形ABCD是正方形,AB=AD,B=D=90,在RtABE和RtADF中,RtADFRtABE(HL)BE=DF;(2)四边形AEMF是菱形,理由为:证明:四边形ABCD是正方形,BCA=DCA=45(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),BE=DF(已证),BC-BE=DC-DF(等式的性质),即CE=CF,在COE和COF中,COECOF(SAS),OE=OF,又OM=OA,四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),AE=AF,平行四边形AEMF是菱形24、 “石鼓阁”的高AB的长
29、度为56m【解析】根据题意得ABC=EDC=90,ABM=GFH=90,再根据反射定律可知:ACB=ECD,则ABCEDC,根据相似三角形的性质可得=,再根据AHB=GHF,可证ABHGFH,同理得=,代入数值计算即可得出结论.【详解】由题意可得:ABC=EDC=90,ABM=GFH=90,由反射定律可知:ACB=ECD,则ABCEDC,=,即=,AHB=GHF,ABHGFH,=,即=,联立,解得:AB=56,答:“石鼓阁”的高AB的长度为56m【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.25、见解析,.【解析】画树状图展示所有9种等可能的结果数,找
30、出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率26、或【解析】把代入二元一次方程组得到关于a,b的方程组,经过整理,得到关于b的一元二次方程,解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案【详解】把代入二元一次方程组得:,由得:a=1+b,把a=1+
31、b代入,整理得:b2+b-2=0,解得:b= -2或b=1,把b= -2代入得:a+2=1,解得:a= -1,把b=1代入得:a-1=1,解得:a=2,即或【点睛】本题考查了二元一次方程组的解,正确掌握代入法是解题的关键27、(1)90;(2)144度;(3)105,120,75;(4)B【解析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为36040%144,故答案为144;(3)A同学得票数为30035%105,B同学得票数为30040%120,C同学得票数为30025%75,故答案为105、120、75;(4)A的最终得分为92.5(分),B的最终得分为98(分),C的最终得分为84(分),B最终当选,故答案为B【点睛】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据