《2023届江西省上饶二中学中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江西省上饶二中学中考考前最后一卷数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1九章算术是中国传统数学的重要著作,方程术是它的最高成就其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )ABCD2四组数
2、中:1和1;1和1;0和0;和1,互为倒数的是()ABCD3若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x21012y83010则抛物线的顶点坐标是()A(1,3)B(0,0)C(1,1)D(2,0)4甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()丙丁平均数88方差1.21.8A甲B乙C丙D丁5如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()ABCD6计算tan30的值等于( )A B C D7如图
3、是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习8到三角形三个顶点的距离相等的点是三角形( )的交点A三个内角平分线B三边垂直平分线C三条中线D三条高9一元二次方程(x+2017)21的解为( )A2016,2018B2016C2018D201710甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数如果设甲每小时做x个,那么可列方程为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,已知矩形ABCD中,点E是BC边上的点,BE2,EC1,AEBC,DFAE,垂足为F则下列结论:ADFEA
4、B;AFBE;DF平分ADC;sinCDF其中正确的结论是_(把正确结论的序号都填上)12与是位似图形,且对应面积比为4:9,则与的位似比为_13老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如2x22x+1x2+5x3:则所捂住的多项式是_14如图,在反比例函数y=(x0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为2,4,6,8,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,Sn,则S1+S2+S3+Sn=_(用含n的代数式表示)15如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得
5、数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm175cm之间的人数约有_人16在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_17如图,菱形ABCD的边长为15,sinBAC=,则对角线AC的长为_.三、解答题(共7小题,满分69分)18(10分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次
6、;周六到周日学生访问该网站的日平均增长率为 19(5分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在O上,OAC=60(1)求AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与O的位置关系,并说明理由;(3)有一动点M从A点出发,在O上按顺时针方向运动一周,当SMAO=SCAO时,求动点M所经过的弧长,并写出此时M点的坐标20(8分)如图,在RtABC中,C=90,A=30,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点
7、同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设APQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的值21(10分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:补全条形统计图,“体育”对应扇形的圆心角是 度;根据以上统计分析,估计该校名学生中喜爱“娱乐”的有 人;在此次问卷调查中,甲、乙两
8、班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率22(10分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写出方案)23(12分)如图1,ABC中,AB=AC=6
9、,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN(1)求证:PMN是等腰三角形;(2)将ADE绕点A逆时针旋转,如图2,当点D、E分别在边AC两侧时,求证:PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长24(14分)如图,ABC中,ACB=90,以BC为直径的O交AB于点D,过点D作O的切线交CB的延长线于点E,交AC于点F(1)求证:点F是AC的中点;(2)若A=30,AF=,求图中阴影部分的面积参考答案一、选择题(每小题只有一个正确答案,每小
10、题3分,满分30分)1、C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x人,物价为y钱,根据题意得故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.2、C【解析】根据倒数的定义,分别进行判断即可得出答案【详解】1和1;11=1,故此选项正确;-1和1;-11=-1,故此选项错误;0和0;00=0,故此选项错误;和1,-(-1)=1,故此选项正确;互为倒数的是:,故选C【点睛】此题主要考查了倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3、C【解析】分析:由表中所给
11、数据,可求得二次函数解析式,则可求得其顶点坐标详解:当或时,当时, ,解得 ,二次函数解析式为,抛物线的顶点坐标为,故选C点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键4、D【解析】求出甲、乙的平均数、方差,再结合方差的意义即可判断【详解】=(6+10+8+9+8+7+8+9+7+7)=8,= (6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2=13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,= (7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-
12、8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2=12=1.2;丙的平均数为8,方差为1.2,丁的平均数为8,方差为1.8,故4个人的平均数相同,方差丁最大故应该淘汰丁故选D【点睛】本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式5、D【解析】分析:根据相似三角形的性质进行解答即可详解:在平行四边形ABCD中,AECD, EAFCDF, AFBC,EAFEBC, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.6、C【解析】tan30= 故选C7、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展
13、开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.8、B【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点故选B点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键9、A【解析】利用直接开平方法解方程【详解】(x+2017)2=1x+2017=1,所以x1=-2018,x2=-1故选A【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p0
14、)的一元二次方程可采用直接开平方的方法解一元二次方程10、A【解析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.【详解】设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.故选A【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】只要证明EABADF,CDF=AEB,利用勾股定理求出AB即可解决问题【详解】四边形ABCD是矩形,AD=BC,ADBC,B=90,BE=2,EC=1,AE=
15、AD=BC=3,AB=,ADBC,DAF=AEB,DFAE,AFD=B=90,EABADF,AF=BE=2,DF=AB=,故正确,不妨设DF平分ADC,则ADF是等腰直角三角形,这个显然不可能,故错误,DAF+ADF=90,CDF+ADF=90,DAF=CDF,CDF=AEB,sinCDF=sinAEB=,故错误,故答案为【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12、2:1【解析】由相似三角形的面积比等于相似比的平方,即可求得与的位似比【详解】解与是位似图形,且对应面积比为4:9,与的
16、相似比为2:1,故答案为:2:1【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方13、x2+7x-4【解析】设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A,则根据题目信息可得 他所捂的多项式为故答案为【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;14、10【解析】过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1A
17、BD的面积,即可得到答案【详解】如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,则点Pn+1的坐标为(2n+2,),则OB=,点P1的横坐标为2,点P1的纵坐标为5,AB=5,S1+S2+S3+Sn=S矩形AP1DB=2(5)=10,故答案为10【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.15、1【解析】用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例【详解】估计该校男生的身高在170c
18、m-175cm之间的人数约为300=1(人),故答案为1【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题16、9.261011【解析】试题解析: 9260亿=9.261011故答案为: 9.261011点睛: 科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数17、24【解析】试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,B
19、D与AC互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;考点:三角函数、菱形的性质及勾股定理;三、解答题(共7小题,满分69分)18、(1)10;(2)0.9;(3)44%【解析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);故答案为10;(2)星期日的日访问总量为3万
20、人次,星期日学生日访问总量占日访问总量的百分比为30%,星期日学生日访问总量为:330%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:=44%;故答案为44%考点:折线统计图;条形统计图19、(1)60;(2)见解析;(3)对应的M点坐标分别为:M1(2,2)、M2(2,2)、M3(2,2)、M4(2,2)【解析】(1)由于OAC=60,易证得OAC是等边三角形,即可得AOC=60(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得OCP是直角三角形,且OCP=90,由此可判断出PC与O的位置关系(3)此题应
21、考虑多种情况,若MAO、OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解【详解】(1)OA=OC,OAC=60,OAC是等边三角形,故AOC=60(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;AC=OP,因此OCP是直角三角形,且OCP=90,而OC是O的半径,故PC与O的位置关系是相切(3)如图;有三种情况:取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,2);劣弧MA的长为:;取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(2,2);劣弧MA的长为
22、:;取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(2,2);优弧MA的长为:;当C、M重合时,C点符合M点的要求,此时M4(2,2);优弧MA的长为:;综上可知:当SMAO=SCAO时,动点M所经过的弧长为对应的M点坐标分别为:M1(2,2)、M2(2,2)、M3(2,2)、M4(2,2)【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解20、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-
23、CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G,则AG=GQ,列方程求解;当P在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30,AB=8,BC=AB=4,AC=,由题意得:CQ=t,AQ=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂
24、直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30,cos30=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30,cos30=,t=;综上所述,当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在AB边上时,即0t1,如图4,作PGAC于G,A=30,AP=8t,AGP=90,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;
25、综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30,AP=8t,AGP=90,PG=4t,AG=4t,由AQ=2AG得:4t=8t,t=,当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理得:CQ2+CP2=PQ2,t=或(舍),综上所述,t的值为或点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.21、(1)72;(2)700;(3)【解析】试
26、题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案试题解析:(1)调查的学生总数为6030%=200(人),则体育类人数为200(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360=72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000=700(人),(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P(2名学生来自不同班)=考点:扇形统计图;条形统计图;列
27、表法与树状图法;用样本估计总体22、(1)这种篮球的标价为每个50元;(2)见解析【解析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100500.9-300=4200元,在A超
28、市分两次购买,每次各买50个,则需要费用:2(50500.9-300)=3900元,单独在B超市购买:100500.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45500.9-300=1725元,两次购买,每次各买45个,需要17252=3450元,其余10个在B超市购买,需要10500.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了
29、分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.23、(1)见解析;(2)见解析;.【解析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)先证明ABDACE,得BD=CE,同理根据三角形中位线定理可得结论;如图4,连接AM,计算AN和DE、EM的长,如图3,证明ABDCAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,点N,P是BC,CD的中点,PNBD,PN=BD,点P,M是CD,DE的中点,PMCE,PM=CE,AB=AC,AD=AE,BD=CE,PM=PN,PMN是等腰三角形;(2)如图2,D
30、AE=BAC,BAD=CAE,AB=AC,AD=AE,ABDACE,点M、N、P分别是线段DE、BC、CD的中点,PN=BD,PM=CE,PM=PN,PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,BAC=DAE,BAD=CAE,AB=AC,AD=AE,ABDCAE,BD=CE,如图4,连接AM,M是DE的中点,N是BC的中点,AB=AC,A、M、N共线,且ANBC,由勾股定理得:AN=4,AD=AE=1,AB=AC=6,=,DAE=BAC,ADEAEC,AM=,DE=,EM=,如图3,RtACM中,CM=,BD=CE=CM+EM=【点睛】此题是三角形的
31、综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出ABDACE,解(2)的关键是判断出ADEAEC24、(1)见解析;(2) 【解析】(1)连接OD、CD,如图,利用圆周角定理得到BDC=90,再判定AC为O的切线,则根据切线长定理得到FD=FC,然后证明3=A得到FD=FA,从而有FC=FA;(2)在RtACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明OBD为等边三角形得到BOD=60,接着根据切线的性质得到ODEF,从而可计算出DE的长,然后根
32、据扇形的面积公式,利用S阴影部分=SODE-S扇形BOD进行计算即可【详解】(1)证明:连接OD、CD,如图,BC为直径,BDC=90,ACB=90,AC为O的切线,EF为O的切线,FD=FC,1=2,1+A=90,2+3=90,3=A,FD=FA,FC=FA,点F是AC中点;(2)解:在RtACB中,AC=2AF=2,而A=30,CBA=60,BC=AC=2,OB=OD,OBD为等边三角形,BOD=60,EF为切线,ODEF,在RtODE中,DE=OD=,S阴影部分=SODES扇形BOD=1=【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式