山东省平邑县曾子学校2023届高考数学全真模拟密押卷含解析.doc

上传人:lil****205 文档编号:87998877 上传时间:2023-04-19 格式:DOC 页数:17 大小:1.55MB
返回 下载 相关 举报
山东省平邑县曾子学校2023届高考数学全真模拟密押卷含解析.doc_第1页
第1页 / 共17页
山东省平邑县曾子学校2023届高考数学全真模拟密押卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《山东省平邑县曾子学校2023届高考数学全真模拟密押卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省平邑县曾子学校2023届高考数学全真模拟密押卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是的共轭复数,则( )ABCD2方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )ABCD3设数列的各项均为正数,前项和为,且,则( )A128B65C64D634

2、已知,分别为内角,的对边,的面积为,则( )AB4C5D5已知实数,满足约束条件,则目标函数的最小值为ABCD6已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )ABCD7运行如图程序,则输出的S的值为() A0B1C2018D20178设,命题“存在,使方程有实根”的否定是( )A任意,使方程无实根B任意,使方程有实根C存在,使方程无实根D存在,使方程有实根9若集合,则( )ABCD10已知复数z满足(i为虚数单位),则z的虚部为( )ABC1D11为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温

3、得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为( )A正相关,相关系数的值为B负相关,相关系数的值为C负相关,相关系数的值为D正相关,相关负数的值为12如果,那么下列不等式成立的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_.14展开式中的系数为_.(用数字做答)15设,若关于的方程有实数解,则

4、实数的取值范围_16在中,是的角平分线,设,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.18(12分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面. (1)求证:平面平面; (2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.19(12分)等差数列的前项和为,已知,(1)求数列的通项公式;(2)设数列的前项和为,求使成立的的最小值20(12分)试求曲线ysinx在矩阵MN变换下的函数解析式,其中M,N21(12分)已知.(1)解

5、不等式;(2)若均为正数,且,求的最小值.22(10分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【详解】i,a+bii,a0,b1,a+b1,故选:A【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题2、D【解析】由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定

6、理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,设,该函数在为增函数, ,在上有零点,故函数的“新驻点”为,那么故选:【点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.3、D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.4、D【解析】由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可

7、求出 的值.【详解】解:,即,即. ,则.,解得., 故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角 的正弦值余弦值.5、B【解析】作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时故选B【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键6、A【解析】可将问题转化,求直线关于直线

8、的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题7、D【解析】依次运行程序框图给出的程序可得第一次:,不满足条件;第二次:,不满足条件;第三次:,不满足条件;第四次:,不满足条件;第五次:,不满足条件;第六次:,满足条件,退出循环输出1

9、选D8、A【解析】只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.9、A【解析】先确定集合中的元素,然后由交集定义求解【详解】,.故选:A【点睛】本题考查求集合的交集运算,掌握交集定义是解题关键10、D【解析】根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属

10、于基础题.11、C【解析】根据正负相关的概念判断【详解】由散点图知随着的增大而减小,因此是负相关相关系数为负故选:C【点睛】本题考查变量的相关关系,考查正相关和负相关的区别掌握正负相关的定义是解题基础12、D【解析】利用函数的单调性、不等式的基本性质即可得出.【详解】,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、32【解析】由已知可得抽取的比例,计算出所有被调查的人数,再乘以抽取的比例即为分层抽样的样本容量.【详解】由题可知,抽取的比例为,被调查的总人数为人,则分层抽样的样本容量是人.故答案为:

11、32【点睛】本题考查分层抽样中求样本容量,属于基础题.14、210【解析】转化,只有中含有,即得解.【详解】只有中含有,其中的系数为故答案为:210【点睛】本题考查了二项式系数的求解,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.15、【解析】先求出,从而得函数在区间上为增函数;在区间为减函数即可得的最大值为,令,得函数取得最小值,由有实数解,进而得实数的取值范围【详解】解:,当时,;当时,;函数在区间上为增函数;在区间为减函数所以的最大值为,令,所以当时,函数取得最小值,又因为方程有实数解,那么,即,所以实数的取值范围是:故答案为:【点睛】本题考查了函数的单调性,函数的最值问题,

12、导数的应用,属于中档题.16、【解析】设,由,用面积公式表示面积可得到,利用,即得解.【详解】设,由得:,化简得,由于,故.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1);(2) .【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围详解:(1)当时,可得的解集为(2)等价于而,且当时等号成立故等价于由可得或,所以的取值范围是点睛:含绝对值不等式的解法有两

13、个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向18、(1)见解析(2)【解析】试题分析: (1)根据已知条件由线线垂直得出线面垂直,再根据面面垂直的判定定理证得成立; (2)通过已知条件求出各边长度,建系如图所示,求出平面的法向量,根据线面角公式代入坐标求得结果.试题解析:(1)证明:取的中点,连接,则,又,所以,则四边形为平行四边形,所以,又平面,平面,.由即及为的中点,可得为等边三角形,又,平面平面,平面平面

14、.(2)解:,为直线与所成的角,由(1)可得,设,则,取的中点,连接,过作的平行线,可建立如图所示的空间直角坐标系,则,所以,设为平面的法向量,则,即,取,则为平面的一个法向量,则直线与平面所成角的正弦值为.点睛: 判定直线和平面垂直的方法:定义法利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面平面与平面垂直的判定方法:定义法利用判定定理:一个平面过另一个平面的一条垂线,则这两个平面垂直 19、(1);(2)的最小值为19.【解析】(1)根据条件列方程组求出首项、公差,即可写出等差数列的

15、通项公式;(2)根据等差数列前n项和化简,利用裂项相消法求和,解不等式即可求解.【详解】(1)等差数列的公差设为,可得,解得,则;(2),前n项和为,即,可得,即,则的最小值为19.【点睛】本题主要考查了等差数列的通项公式,等差数列的前n项和,裂项相消法求和,属于中档题20、y2sin2x【解析】计算MN,计算得到函数表达式.【详解】M,N,MN, 在矩阵MN变换下, 曲线ysinx在矩阵MN变换下的函数解析式为y2sin2x【点睛】本题考查了矩阵变换,意在考查学生的计算能力.21、(1);(2)【解析】(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【详解】(1),

16、由得或或,解得.(2),所以,由柯西不等式得:所以,即 (当且仅当时取“=”).所以的最小值为.【点睛】本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.22、(1)证明见解析(2)证明见解析【解析】(1)通过证明,即可证明线面平行;(2)通过证明平面,即可证明线线垂直.【详解】(1)连,因为为平行四边形,为其中心,所以,为中点,又因为为中点,所以,又平面,平面所以,平面;(2)作于因为平面平面,平面平面,平面,所以,平面又平面,所以又,平面,平面所以,平面,又平面,所以,.【点睛】此题考查证明线面平行和线面垂直,通过线面垂直得线线垂直,关键在于熟练掌握相关判定定理,找出平行关系和垂直关系证明.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁