山东省高青县2023届中考数学四模试卷含解析.doc

上传人:lil****205 文档编号:87998189 上传时间:2023-04-19 格式:DOC 页数:17 大小:644.50KB
返回 下载 相关 举报
山东省高青县2023届中考数学四模试卷含解析.doc_第1页
第1页 / 共17页
山东省高青县2023届中考数学四模试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《山东省高青县2023届中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省高青县2023届中考数学四模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,四边形ABCD中,ADBC,B=90,E为AB上一点,分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处若AD=3,BC=5,则EF的值是()

2、AB2CD22某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A参加本次植树活动共有30人B每人植树量的众数是4棵C每人植树量的中位数是5棵D每人植树量的平均数是5棵3如图,ABC是ABC以点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则OB:OB为()A2:3B3:2C4:5D4:94下列各式计算正确的是( )ABCD5某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A28109B2.8108C2.8109D2.810106在同一平面内,下列说法:过两点有且只有一条直线;两条不相同的直线有且只有一个公共点;

3、经过直线外一点有且只有一条直线与已知直线垂直;经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A1个B2个C3个D4个7如图所示,在折纸活动中,小明制作了一张ABC纸片,点D,E分别在边AB,AC上,将ABC沿着DE折叠压平,A与A重合,若A=70,则1+2=()A70B110C130D14087的相反数是( )A7B7CD9计算 的结果为()A1BxCD10若点A(a,b),B(,c)都在反比例函数y的图象上,且1c0,则一次函数y(bc)x+ac的大致图象是()ABCD11若,则的值为( )A6 B6 C18 D3012某一公司共有51名员工(包括经理),经理的工资高于

4、其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )A平均数和中位数不变B平均数增加,中位数不变C平均数不变,中位数增加D平均数和中位数都增大二、填空题:(本大题共6个小题,每小题4分,共24分)13如图甲,对于平面上不大于90的MON,我们给出如下定义:如果点P在MON的内部,作PEOM,PFON,垂足分别为点E、F,那么称PE+PF的值为点P相对于MON的“点角距离”,记为d(P,MON)如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于xO

5、y,满足d(P,xOy)=10,点P的坐标是_14我们知道,四边形具有不稳定性如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D处,则点C的对应点C的坐标为_15抛物线y=x2+bx+c的部分图象如图所示,若y0,则x的取值范围是_16如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_17如图,矩形中,将矩形沿折叠,点落在点处.则重叠部分的面积为_.18已知二次函数yax2+bx+c中,函数y与自变量x的部分对应值如表所示:x54321y83010当y3时,x的取值范围是_三、解

6、答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)20(6分)如图,BD是ABC的角平分线,点E,F分别在BC,AB上,且DEAB,BEAF(1)求证:四边形ADEF是平行四边形;(2)若ABC60,BD6,求D

7、E的长21(6分)计算:4sin30+(1)0|2|+()222(8分)杨辉算法中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?23(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型 目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(

8、1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用24(10分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度(结果保留根号)25(10分)如图,在ABC中,B90,AB4,BC1在BC上求作一点P,使PA+PBBC;(尺规作图,不写作法,保留作图痕迹)求BP的长26(12分)如图,平面直

9、角坐标系内,小正方形网格的边长为1个单位长度,ABC的三个顶点的坐标分别为A(1,3),B(4,0),C(0,0)(1)画出将ABC向上平移1个单位长度,再向右平移5个单位长度后得到的A1B1C1;(2)画出将ABC绕原点O顺时针方向旋转90得到A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标27(12分)已如:O与O上的一点A(1)求作:O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四

10、个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DHBC于H,由于ADBC,B=90,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BCBH=BCAD=2,然后在RtDHC中,利用勾股定理计算出DH=2,所以EF=解:分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处,EA=EF,BE=EF,DF=AD=3,CF=CB=5,AB=2EF,DC=DF+CF=8,作DHBC于H,ADBC,B=90,四边形ABHD为矩形,DH=AB=2EF,

11、HC=BCBH=BCAD=53=2,在RtDHC中,DH=2,EF=DH=故选A点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理2、D【解析】试题解析:A、4+10+8+6+2=30(人),参加本次植树活动共有30人,结论A正确;B、108642,每人植树量的众数是4棵,结论B正确;C、共有30个数,第15、16个数为5,每人植树量的中位数是5棵,结论C正确;D、(34+410+58+66+72)304.73(棵),每人植树量的平均数约是4.73棵,结论D不正确故选D考点:1.条形统计图;2.加权平均数;3

12、.中位数;4.众数3、A【解析】根据位似的性质得ABCABC,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,ABAB,ACAC,ABCABC,ABC与ABC的面积的比4:9,ABC与ABC的相似比为2:3, ,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心4、C【解析】解:A2a与2不是同类项,不能合并,故本选项错误;B应为,故本选项错误;C,正确;D应为,故本选项错误故选C【点睛】本题考查幂的乘方与积的乘方;同底数幂的乘法5、D【解析】根据科学计数法的定义来表

13、示数字,选出正确答案.【详解】解:把一个数表示成a(1a10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.81010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.6、C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解【详解】解:在同一平面内,过两点有且只有一条直线,故正确;两条不相同的直线相交有且只有一个公共点,平行没有公共点,故错误;在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故正确;经过直线外一点有且只有一条直线与已知直线平行,故正确,综上所述,

14、正确的有共3个,故选C【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键7、D【解析】四边形ADAE的内角和为(4-2)180=360,而由折叠可知AED=AED,ADE=ADE,A=A,AED+AED+ADE+ADE=360-A-A=360-270=220,1+2=1802-(AED+AED+ADE+ADE)=1408、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.9、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【点睛】本

15、题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则10、D【解析】将,代入,得,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,即,即与异号又,故选D【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.11、B【解析】试题分析:,即,原式=12+18=1故选B考点:整式的混合运算化简求值;整体思想;条件求值12、B【解析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数【详解】解:设这家公司除经理外50名员工的工资

16、和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然;由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变故选B【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响二、填空题:(本大题共6个小题,每小题4分,共24分)13、(6,4)或(4,6)【解析】设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可【详解】解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,当点P在第一象限时,x+x-2=10,解得x=6,x-2=4,P(6,4);当点P在第三象限时

17、,-x-x+2=10,解得x=-4,x-2=-6,P(-4,-6)故答案为:(6,4)或(-4,-6)【点睛】本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键14、(2,)【解析】过C作CH于H,由题意得2AO=AD,所以DAO=60,AO=1,AD=2,勾股定理知OD=,BH=AO所以C(2,).故答案为(2,).15、3x1【解析】试题分析:根据抛物线的对称轴为x=1,一个交点为(1,0),可推出另一交点为(3,0),结合图象求出y0时,x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=1,已知一个交点为(1,0),根据对称性,则另一交点为(3,0),

18、所以y0时,x的取值范围是3x1故答案为3x1考点:二次函数的图象16、【解析】由正六边形的性质得出AB=BC=AF,ABC=BAF=120,由等腰三角形的性质得出ABF=BAC=BCA=30,证出AG=BG,CBG=90,由含30角的直角三角形的性质得出CG=2BG=2AG,即可得出答案【详解】六边形ABCDEF是正六边形,ABBCAF,ABCBAF120,ABFBACBCA30,AGBG,CBG90,CG2BG2AG,;故答案为:【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30角的直角三角形的性质是解题的关键17、10【解

19、析】根据翻折的特点得到,.设,则.在中,即,解出x,再根据三角形的面积进行求解.【详解】翻折,又,.设,则.在中,即,解得,.【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.18、x4或x1【解析】观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y-3时,x的取值范围即可【详解】由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,且x=1时,y=-3,所以,y-3时,x的取值范围为x-4或x1故答案为x-4或x1【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解

20、题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,BC=12km,B=30,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90,B=45

21、,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.20、(1)证明见解析;(2).【解析】(1)由BD是ABC的角平分线,DEAB,可证得BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EHBD于点H,由ABC=60,BD是ABC的平分线,可求得BH的长,从而求得BE

22、、DE的长,即可求得答案【详解】(1)证明:BD是ABC的角平分线,ABD=DBE,DEAB,ABD=BDE,DBE=BDE,BE=DE;BE=AF,AF=DE;四边形ADEF是平行四边形;(2)解:过点E作EHBD于点HABC=60,BD是ABC的平分线,ABD=EBD=30,DH=BD=6=3,BE=DE,BH=DH=3,BE=,DE=BE=【点睛】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识注意掌握辅助线的作法21、1.【解析】按照实数的运算顺序进行运算即可.【详解】原式 =1【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝

23、对值,熟练掌握各个知识点是解题的关键.22、12【解析】设矩形的长为x步,则宽为(60x)步,根据题意列出方程,求出方程的解即可得到结果【详解】解:设矩形的长为x步,则宽为(60x)步,依题意得:x(60x)864,整理得:x260x+8640,解得:x36或x24(不合题意,舍去),60x603624(步),362412(步),则该矩形的长比宽多12步【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键23、(1)大货车用8辆,小货车用7辆;(2)y=100x+1(3)见解析. 【解析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程

24、组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为7-(10-x)辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案【详解】(1)设大货车用x辆,小货车用y辆,根据题意得:解得:大货车用8辆,小货车用7辆(2)y=800x+900(8-x)+400(10-x)+6007-(10-x)=100x+1(3x8,且x为整数)(3)由题意得:12x+8(10-x)100,解得:x5,又3x8,5x8且为整数,y=100x+1,k=1000,y随x的

25、增大而增大,当x=5时,y最小,最小值为y=1005+1=9900(元)答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村最少运费为9900元24、CD的长度为1717cm【解析】在直角三角形中用三角函数求出FD,BE的长,而FCAEABBE,而CDFCFD,从而得到答案.【详解】解:由题意,在RtBEC中,E=90,EBC=60,BCE=30,tan30=,BE=ECtan30=51=17(cm);CF=AE=34+BE=(34+17)cm,在RtAFD中,FAD=45,FDA=45,DF=AF=EC=51cm,则CD=FCFD=34+1751=17

26、17,答:CD的长度为1717cm【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.25、 (1)见解析;(2)2.【解析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【详解】(1)如图所示,点P即为所求(2)设BPx,则CP1x,由(1)中作图知APCP1x,在RtABP中,由AB2+BP2AP2可得42+x2(1x)2,解得:x2,所以BP2【点睛】考核知识点:勾股定理和线段垂直平分线.26、(1)作图见解析;(2)作图见解析;(3)P(,0)【解析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后

27、顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求【详解】解:(1)如图所示,A1B1C1为所求做的三角形;(2)如图所示,A2B2O为所求做的三角形;(3)A2坐标为(3,1),A3坐标为(4,4),A2A3所在直线的解析式为:y=5x+16,令y=0,则x=,P点的坐标(,0)考点:平移变换;旋转变换;轴对称-最短路线问题27、(1)答案见解析;(2)证明见解析.【解析】(1)如图,在O上依次截取六段弦,使它们都等于OA,从而得到正六边形AB

28、CDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,则判断BE为直径,所以BFE=BCE=90,同理可得FBC=CEF=90,然后判断四边形BCEF为矩形【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形理由如下:连接BE,如图,六边形ABCDEF为正六边形,AB=BC=CD=DE=EF=FA,BE为直径,BFE=BCE=90,同理可得FBC=CEF=90,四边形BCEF为矩形【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了矩形的判定与正六边形的性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁