山东省潍坊市市级名校2023届中考数学四模试卷含解析.doc

上传人:lil****205 文档编号:88000571 上传时间:2023-04-19 格式:DOC 页数:17 大小:686.50KB
返回 下载 相关 举报
山东省潍坊市市级名校2023届中考数学四模试卷含解析.doc_第1页
第1页 / 共17页
山东省潍坊市市级名校2023届中考数学四模试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《山东省潍坊市市级名校2023届中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省潍坊市市级名校2023届中考数学四模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,已知点A,B分别是反比例函数y=(x0),y=(x0)的图象上的点,且AOB=90,tanBAO=,则k的值为()A2B2C4D42在实数3.5、0、4中,最小的数是()A3.5BC0D43如图,AB是O的直径,D,E是半圆上任意两点,连接A

2、D,DE,AE与BD相交于点C,要使ADC与BDA相似,可以添加一个条件下列添加的条件中错误的是( ) AACDDABBADDECADABCDBDDAD2BDCD4tan45的值等于()ABCD15在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A中位数是2B众数是17C平均数是2D方差是26已知下列命题:对顶角相等;若ab0,则;对角线相等且互相垂直的四边形是正方形;抛物线y=x22x与坐标轴有3个不同交点;边长相

3、等的多边形内角都相等从中任选一个命题是真命题的概率为()ABCD7不等式组的解集为则的取值范围为( )ABCD8如图,PA、PB切O于A、B两点,AC是O的直径,P=40,则ACB度数是()A50B60C70D809下列各式中计算正确的是ABCD10实数5.22的绝对值是()A5.22B5.22C5.22D二、填空题(本大题共6个小题,每小题3分,共18分)11在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度若设原计划每天修路xm,则根据题意可得方程 12如图,点G是AB

4、C的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将ADG绕点D旋转180得到BDE,ABC的面积=_cm113分解因式:m3m=_14含45角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为_15某中学数学教研组有25名教师,将他们分成三组,在3845(岁)组内有8名教师,那么这个小组的频率是_。16一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_三、解答题(共8题,共72分)17(8分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、

5、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率18(8分)已知a2+2a=9,求的值19(8分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1y2时x的取值范围20(8分)解分式方程:=21(8分)如图,AB为半圆O的直径,AC是O的一条弦,D为的中点,作DEAC,交AB的延

6、长线于点F,连接DA求证:EF为半圆O的切线;若DADF6,求阴影区域的面积(结果保留根号和)22(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(3,0),B(0,3),C(1,0)(1)求此抛物线的解析式(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PDAB于点D动点P在什么位置时,PDE的周长最大,求出此时P点的坐标23(12分)如图1,在长方形ABCD中,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止若P、Q两点同时出发,速度分别为每秒、,a

7、秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象(1)求出a值;(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?24如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】首先过点A作ACx轴于C,过点B作BDx轴于D,易得OBDAOC,又由点A,B分别在反比例函数y= (x

8、0),y=(x0)的图象上,即可得SOBD= ,SAOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作ACx轴于C,过点B作BDx轴于D,ACO=ODB=90,OBD+BOD=90,AOB=90,BOD+AOC=90,OBD=AOC,OBDAOC,又AOB=90,tanBAO= ,=, = ,即 ,解得k=4,又k0,k=-4,故选:D【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。2、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于

9、一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数3.5、0、4中,最小的数是4,故选D【点睛】掌握实数比较大小的法则3、D【解析】解:ADC=ADB,ACD=DAB,ADCBDA,故A选项正确;AD=DE, ,DAE=B,ADCBDA,故B选项正确;AD2=BDCD,AD:BD=CD:AD,ADCBDA,故C选项正确;CDAB=ACBD,CD:AC=BD:AB,但ACD=ABD不是对应夹角,故D选项错误,故选:D考点:1圆周角定理2相似三角形的判定4、D【解析】根据特殊角三角函数值,可得答案【详解】解:tan45=1,故选D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数

10、值是解题关键5、A【解析】试题解析:察表格,可知这组样本数据的平均数为:(04+112+216+317+41)50=;这组样本数据中,3出现了17次,出现的次数最多,这组数据的众数是3;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,这组数据的中位数为2,故选A考点:1.方差;2.加权平均数;3.中位数;4.众数6、B【解析】对顶角相等,故此选项正确;若ab0,则,故此选项正确;对角线相等且互相垂直平分的四边形是正方形,故此选项错误;抛物线y=x22x与坐标轴有2个不同交点,故此选项错误;边长相等的多边形内角不一定都相等,故此选项错误;从中任选一个命题是真命题的概率为:故选:B

11、7、B【解析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可【详解】解:解不等式组,得不等式组的解集为x2,k12,解得k1故选:B【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中8、C【解析】连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。【详解】连接BC.PA,PB是圆的切线在四边形中,所以是直径故答案选C.【点睛】本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。9、B【解析】根据完全平方公式对A进行判断;根据

12、幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.10、A【解析】根据绝对值的性质进行解答即可【详解】实数5.1的绝对值是5.1故选A【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】试题解析:原计划用的时间为: 实际用的时间为: 可列方程为: 故答案为12、18【解析】三角形的重心是三条中线的交点,根据中线的性质,SACD=S

13、BCD;再利用勾股定理逆定理证明BGCE,从而得出BCD的高,可求BCD的面积【详解】点G是ABC的重心, GB=3,EG=GC=4,BE=GA=5,即BGCE,CD为ABC的中线, 故答案为:18.【点睛】考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.13、m(m+1)(m-1)【解析】根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),可以先提公因式,再利用平方差完成因式分解【详解】解:故答案为:m(m+1)(m-1)【点睛】本题考查因式分解,掌握因式分解的技巧是解题关键14、【解析】过C作CDx轴于

14、点D,则可证得AOBCDA,可求得CD和OD的长,可求得C点坐标,利用待定系数法可求得直线BC的解析式【详解】如图,过C作CDx轴于点DCAB=90,DAC+BAO=BAO+ABO=90,DAC=ABO在AOB和CDA中,AOBCDA(AAS)A(2,0),B(0,1),AD=BO=1,CD=AO=2,C(3,2),设直线BC解析式为y=kx+b,解得:,直线BC解析式为yx+1故答案为yx+1【点睛】本题考查了待定系数法及全等三角形的判定和性质,构造全等三角形求得C点坐标是解题的关键15、0.1【解析】根据频率的求法:频率=,即可求解【详解】解:根据题意,38-45岁组内的教师有8名,即频数

15、为8,而总数为25;故这个小组的频率是为=0.1;故答案为0.1【点睛】本题考查频率、频数的关系,属于基础题,关键是掌握频率的求法:频率=16、1【解析】先根据平均数求出x,再根据极差定义可得答案【详解】由题意知=9,解得:x=8,这列数据的极差是10-8=1,故答案为1【点睛】本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键三、解答题(共8题,共72分)17、解:(1)该校班级个数为420%=20(个),只有2名留守儿童的班级个数为:20(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4

16、名学生设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=【解析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.18、,【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值试题解析:= = =, a2+2a=9,(a+1)2=1原式=19、(1);(1

17、)C(1,4),x的取值范围是x1或0x1【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论【详解】(1)点A在直线y1=1x1上,设A(x,1x1),过A作ACOB于C,ABOA,且OA=AB,OC=BC,AC=OB=OC,x=1x1,x=1,A(1,1),k=11=4,;(1),解得:,C(1,4),由图象得:y1y1时x的取值范围是x1或0x1【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析

18、式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大20、x=1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】方程两边都乘以x(x2),得:x=1(x2),解得:x=1,检验:x=1时,x(x2)=11=10,则分式方程的解为x=1【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验21、(1)证明见解析 (2)6【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出ODEF,即可得出答案;(2)直接利用得出SACDSCOD,再利用S阴影SAEDS扇形COD,求出答案【详解】(1)证明:连接OD,D为弧BC的中点

19、,CADBAD,OAOD,BADADO,CADADO,DEAC,E90,CAD+EDA90,即ADO+EDA90,ODEF,EF为半圆O的切线;(2)解:连接OC与CD,DADF,BADF,BADFCAD,又BAD+CAD+F90,F30,BAC60,OCOA,AOC为等边三角形,AOC60,COB120,ODEF,F30,DOF60,在RtODF中,DF6,ODDFtan306,在RtAED中,DA6,CAD30,DEDAsin303,EADAcos309,COD180AOCDOF60,由CODO,COD是等边三角形,OCD60,DCOAOC60,CDAB,故SACDSCOD,S阴影SAED

20、S扇形COD【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出SACDSCOD是解题关键22、(1)y=x22x+1;(2)( ,)【解析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明AOB是等腰直角三角形,得出BAO=45,再证明PDE是等腰直角三角形,则PE越大,PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1

21、)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,PDE的周长也最大将x=-代入-x2-2x+1,进而得到P点的坐标【详解】解:(1)抛物线y=ax2+bx+c经过点A(1,0),B(0,1),C(1,0),解得,抛物线的解析式为y=x22x+1;(2)A(1,0),B(0,1),OA=OB=1,AOB是等腰直角三角形,BAO=45PFx轴,AEF=9045=45,又PDAB,PDE是等腰直角三角形,PE越大,PDE的周长越大设直线AB的解析式为y=kx+b,则,解得,即直线AB的解析式为y=x+1设P点的坐标为(x,x22x+1),E点的坐标为(x,x+1),则PE=(x22x

22、+1)(x+1)=x21x=(x+)2+,所以当x=时,PE最大,PDE的周长也最大当x=时,x22x+1=()22()+1=,即点P坐标为(,)时,PDE的周长最大【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中23、(1)6;(2);(3)10或;【解析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因

23、此由(2)可列方程【详解】(1)由图象可知,当点P在BC上运动时,APD的面积保持不变,则a秒时,点P在AB上,AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x6)=2x6,Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=3412;(3)当P、Q两点相遇前相距3cm时,(2x6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x6)()=3,解得x=,当x=10或时,P、Q两点相距3cm【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式24、答案见解析【解析】根据轴对称的性质作出线段AC的垂直平分线即可得【详解】如图所示,直线EF即为所求【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁