《安徽省合肥市庐阳中学2023届中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省合肥市庐阳中学2023届中考五模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径ADCE运动,则APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )ABCD2如图,正方形ABCD中,AB=6,G
2、是BC的中点将ABG沿AG对折至AFG,延长GF交DC于点E,则DE的长是 ( )A1B1.5C2D2.53直线AB、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定4当 a0 时,下列关于幂的运算正确的是( )Aa0=1Ba1=aC(a)2=a2D(a2)3=a55如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )ABCD6若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )A6B3.5C2.5D17如图,AB与O相切于点A,BO与
3、O相交于点C,点D是优弧AC上一点,CDA27,则B的大小是( )A27B34C36D548地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( )A149106千米2 B14.9107千米2 C1.49108千米2 D0.149109千29如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A甲B乙C丙D丁10如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )A2BCD二、填空题(共7小题,每小题3分,
4、满分21分)11从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_12如图,已知AB是O的直径,点C在O上,过点C的切线与AB的延长线交于点P,连接AC,若A=30,PC=3,则BP的长为 132018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有_万人14已知一次函数yax+b,且2a+b1,则该一次函数图象必经过点_15已知A(4,y1),B(1,y2)是反比例函数y=图象上的两
5、个点,则y1与y2的大小关系为_16如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则1的度数为_17在数轴上,点A和点B分别表示数a和b,且在原点的两侧,若=2016,AO=2BO,则a+b=_三、解答题(共7小题,满分69分)18(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD80cm,宽AB48cm,小强身高166cm,下半身FG100cm,洗漱时下半身与地面成80(FGK80),身体前倾成125(EFG125),脚与洗漱台距离GC15cm(点D,C,G,K在同一直线上)(cos800.17,sin800.98,1.414)(1)此
6、时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?19(5分)杨辉算法中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?20(8分)解不等式组 请结合题意填空,完成本题的解答(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等式和的解集在数轴上表示出来:(IV)原不等式组的解集为 21(10分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统
7、计图和图,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为 ,图中m的值为 ;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标22(10分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的
8、圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?23(12分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润24(14分)在平面直角坐标系xOy中,点A在
9、x轴的正半轴上,点B的坐标为(0,4),BC平分ABO交x轴于点C(2,0)点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分PDO交y轴于点F设点D的横坐标为t(1)如图1,当0t2时,求证:DFCB;(2)当t0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当MCE的面积等于BCO面积的倍时,直接写出此时点E的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由题意可知,当时,;当时,;当时,.时,;时,.结合函数解析
10、式,可知选项B正确.【点睛】考点:1动点问题的函数图象;2三角形的面积2、C【解析】连接AE,根据翻折变换的性质和正方形的性质可证RtAFERtADE,在直角ECG中,根据勾股定理求出DE的长.【详解】连接AE,AB=AD=AF,D=AFE=90,由折叠的性质得:RtABGRtAFG,在AFE和ADE中,AE=AE,AD=AF,D=AFE,RtAFERtADE,EF=DE,设DE=FE=x,则CG=3,EC=6x.在直角ECG中,根据勾股定理,得:(6x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.3、A【解析】
11、根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AOD,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答4、A【解析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案【详解】A选项:a0=1,正确;B选项:a1= ,故此选项错误;C选项:(a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误; 故选A【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键5、B【解析】由折叠的性质得到AE=AB,E=B
12、=90,易证RtAEFRtCDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可【详解】矩形ABCD沿对角线AC对折,使ABC落在ACE的位置,AE=AB,E=B=90,又四边形ABCD为矩形,AB=CD,AE=DC,而AFE=DFC,在AEF与CDF中, ,AEFCDF(AAS),EF=DF;四边形ABCD为矩形,AD=BC=6,CD=AB=4,RtAEFRtCDF,FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中,CF2=CD2+DF2,即x2=42+(6-x
13、)2,解得x,则FD6-x=.故选B【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等也考查了矩形的性质和三角形全等的判定与性质以及勾股定理6、C【解析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,中位数是4,平均数为(2+3+4+5+x)5,4=(2+3+4+5+x)5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4
14、+5+x)5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)5=3,解得x=1,符合排列顺序;x的值为6、3.5或1故选C【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚
15、,计算方法不明确而解答不完整注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数7、C【解析】由切线的性质可知OAB=90,由圆周角定理可知BOA=54,根据直角三角形两锐角互余可知B=36【详解】解:AB与O相切于点A,OABAOAB=90CDA=27,BOA=54B=90-54=36故选C考点:切线的性质8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正
16、数;当原数的绝对值小于1时,n是负数解:149000000=1.492千米1故选C把一个数写成a10n的形式,叫做科学记数法,其中1|a|10,n为整数因此不能写成149106而应写成1.4929、A【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】=,从甲和丙中选择一人参加比赛,=,选择甲参赛,故选A【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.10、B【解析】作PAx轴于点A,构造直角三角形,根据三角函数的定义求解【详解】过P作x轴的垂线,交x轴于点A,P(2,4),OA=2,AP=4,.故选B【点睛】本题考查的知识点
17、是锐角三角函数的定义,解题关键是熟记三角函数的定义.二、填空题(共7小题,每小题3分,满分21分)11、【解析】共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概率= .故答案为.12、【解析】试题分析:连接OC,已知OA=OC,A=30,所以OCA=A=30,由三角形外角的性质可得COB=A+ACO=60,又因PC是O切线,可得PCO=90,P=30,再由PC=3,根据锐角三角函数可得OC=PCtan30=,PC=2OC=2,即可得PB=POOB=.考点:切线的性质;锐角三角函数13、1【解析】分析:用总
18、人数乘以样本中出境游东南亚地区的百分比即可得详解:出境游东南亚地区的游客约有700(116%15%11%13%)=70045%=1(万)故答案为1点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用14、(2,1)【解析】一次函数y=ax+b, 当x=2,y=2a+b,又2a+b=1,当x=2,y=1,即该图象一定经过点(2,1).故答案为(2,1)15、y1y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题详解:反比例函数y=-,-40,在每个象限内,y随x的增大而增大,A(-4,y1
19、),B(-1,y1)是反比例函数y=-图象上的两个点,-4-1,y1y1,故答案为:y1y1点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答16、60【解析】先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)1806=120,1=120-60=60.故答案为:60.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) 180是解答本题的关键.17、-672或672【解析】 ,a-b=2016, AO=2BO,A和点B分别在原点的两侧a=-2b. 当a-b
20、=2016时,-2b-b=2016,解得:b=-672.a=2(-672)=1342,a+b=1344+(-672)=672.同理可得当a-b=-2016时,a+b=-672, a+b=672,故答案为:672或672.三、解答题(共7小题,满分69分)18、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=
21、80,FN=100sin8098,EFG=125,EFM=18012510=45,FM=66cos45=46.53,MN=FN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin4546.53,PH46.53,GN=100cos8017,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm19、12【解析】设矩形的长为x步,则宽为(60x)步,根据题意列出方程,求出方程的解即可得到结果【详解】解:设矩形的长为x步,则宽
22、为(60x)步,依题意得:x(60x)864,整理得:x260x+8640,解得:x36或x24(不合题意,舍去),60x603624(步),362412(步),则该矩形的长比宽多12步【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键20、(1)x;(1)x1;(3)答案见解析;(4)x1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解:(I)解不等式(1),得x;(II)解不等式(1),得x1;(III)把不等式和的解集在数轴上表示出来:(IV)原不等式组的解集为:x1故答案为x、x1、x1【点
23、睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键21、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标【解析】分析:()根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可; ()根据平均数、众数、中位数的定义求解可得; ()总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得详解:()本次抽测的男生人数为1020%=50,m%=100%=1%,所以m=1 故答案为50、1; ()平均数为=5.16次,众数
24、为5次,中位数为=5次; ()350=2答:估计该校350名九年级男生中有2人体能达标点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据22、(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6;(3)估计最喜欢读“名人传记”的学生是4896人【解析】(1)由“科普知识”人数及其百分比可得总人数;(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360乘以“其他”人数所占比例可得;(3)总人数乘以“名人传记”的百分比可得【详解】(1)84035%=240
25、0(人),该区抽样调查的人数是2400人;(2)240025%=600(人),该区抽样调查最喜欢“漫画丛书”的人数是600人,补全图形如下:360=21.6,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6;(3)从样本估计总体:1440034%=4896(人),答:估计最喜欢读“名人传记”的学生是4896人【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比23、(1)y是x的一次函数,y=30x+1(2)w=30x2780x31(3)以3元/
26、个的价格销售这批许愿瓶可获得最大利润4元【解析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同(2)销售利润=每个许愿瓶的利润销售量(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润【详解】解:(1)y是x的一次函数,设y=kx+b,图象过点(10,300),(12,240),解得y=30x1当x=14时,y=180;当x=16时,y=120,点(14,180),(16,120)均在函数y=30x+1图象上y与x之间的函数关系式为y=30x+1(2)w=(x6)(30
27、x1)=30x2780x31,w与x之间的函数关系式为w=30x2780x31(3)由题意得:6(30x+1)900,解得x3w=30x2780x31图象对称轴为:a=300,抛物线开口向下,当x3时,w随x增大而减小当x=3时,w最大=4以3元/个的价格销售这批许愿瓶可获得最大利润4元24、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)求出PBO+PDO=180,根据角平分线定义得出CBO=PBO,ODF=PDO,求出CBO+ODF=90,求出CBO=DFO,根据平行线的性质得出即可;(2)求出ABO=PDA,根据角平分线定义得出CBO=ABO,CDQ=PDO,求出CBO=C
28、DQ,推出CDQ+DCQ=90,求出CQD=90,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可【详解】(1)证明:如图1在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),AOB=90DPAB于点P,DPB=90,在四边形DPBO中,DPB+PBO+BOD+PDO=360,PBO+PDO=180,BC平分ABO,DF平分PDO,CBO=PBO,ODF=PDO,CBO+ODF=(PBO+PDO)=90,在FDO中,OFD+ODF=90,CBO=DFO,DFCB(2)直线DF与CB的位置关系是:DFCB,证明:延长DF交CB于点Q,如图2,在ABO中,A
29、OB=90,BAO+ABO=90,在APD中,APD=90,PAD+PDA=90,ABO=PDA,BC平分ABO,DF平分PDO,CBO=ABO,CDQ=PDO,CBO=CDQ,在CBO中,CBO+BCO=90,CDQ+DCQ=90,在QCD中,CQD=90,DFCB(3)解:过M作MNy轴于N,M(4,-1),MN=4,ON=1,当E在y轴的正半轴上时,如图3,MCE的面积等于BCO面积的倍时,2OE+(2+4)1-4(1+OE)=24,解得:OE=,当E在y轴的负半轴上时,如图4,(2+4)1+(OE-1)4-2OE=24,解得:OE=,即E的坐标是(0,)或(0,-)【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度