2022-2023学年安徽省合肥市中学科大附中中考四模数学试题含解析.doc

上传人:茅**** 文档编号:87798500 上传时间:2023-04-17 格式:DOC 页数:16 大小:703KB
返回 下载 相关 举报
2022-2023学年安徽省合肥市中学科大附中中考四模数学试题含解析.doc_第1页
第1页 / 共16页
2022-2023学年安徽省合肥市中学科大附中中考四模数学试题含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2022-2023学年安徽省合肥市中学科大附中中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省合肥市中学科大附中中考四模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列算式的运算结果正确的是()Am3m2=m6 Bm5m3=m2(m0)C(m2)3=m5 Dm4m2=m22在平面直角坐标系中,点(2,3)所在的象限是( )A第一象限B第二象限C第三象限D第四象限3点M(a,2a)在反比例函数y的图象上,那么a的值是( )A4B4C2D24下列运算正确的

2、是()Aa3+a3a6Ba6a2a4Ca3a5a15D(a3)4a75下列实数中,在2和3之间的是( )ABCD6若一个正多边形的每个内角为150,则这个正多边形的边数是()A12B11C10D97潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖其中,数字2000亿元用科学记数法表示为()元(精确到百亿位)A21011 B21012 C2.01011 D2.010108已知O1与O2的半径分别是3cm和5cm,

3、两圆的圆心距为4cm,则两圆的位置关系是( )A相交 B内切 C外离 D内含9如图是抛物线y1=ax2+bx+c(a0)图象的一部分,其顶点坐标为A(1,3),与x轴的一个交点为B(3,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:abc0;不等式ax2+(bm)x+cn0的解集为3x1;抛物线与x轴的另一个交点是(3,0);方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()ABCD10如图,平行四边形ABCD的顶点A、B、D在O上,顶点C在O直径BE上,连结AE,若E=36,则ADC的度数是( )A44B53C72D54二、填空题(共7小题,每小题3分,满分

4、21分)11如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_12化简;(1)=_13如图,在ABCD中,AD=2,AB=4,A=30,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 (结果保留)14布袋中装有2个红球和5个白球,它们除颜色外其它都相同如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_15如图,在ABC中,B40,C45,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则DAE_16若实数a、b在数轴上的位置如图所示,则代数式|ba|+化简

5、为_17如图,利用图形面积的不同表示方法,能够得到的代数恒等式是_(写出一个即可)三、解答题(共7小题,满分69分)18(10分)如图,儿童游乐场有一项射击游戏从O处发射小球,将球投入正方形篮筐DABC正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3)小球按照抛物线yx2+bx+c 飞行小球落地点P 坐标(n,0)(1)点C坐标为 ;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数yx2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围19(5分)某市正在举行文化艺术节活动,一商店抓住商机,决

6、定购进甲,乙两种艺术节纪念品若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?20(8分)如图,点A的坐标为(4,0),点B的坐标为(0,2),把点A绕点B顺时针旋转90得到的点C恰好在

7、抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得QPO=OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标21(10分)已知P是的直径BA延长线上的一个动点,P的另一边交于点C、D,两点位于AB的上方,6,OP=m,如图所示另一个半径为6的经过点C、D,圆心距(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)POO1在

8、点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由22(10分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50,观测旗杆底部B的仰角为45,求旗杆AB的高度(参考数据:sin500.77,cos500.64,tan501.19)23(12分)如图,矩形ABCD中,CEBD于E,CF平分DCE与DB交于点F求证:BFBC;若AB4cm,AD3cm,求CF的长24(14分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD80cm,宽AB48cm,小强身高166cm,下半身FG100cm,洗漱时

9、下半身与地面成80(FGK80),身体前倾成125(EFG125),脚与洗漱台距离GC15cm(点D,C,G,K在同一直线上)(cos800.17,sin800.98,1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案【详解】A、m3m2=m5,故此选项错误;B、m5m3=m2(m0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m

10、2,无法计算,故此选项错误;故选:B【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键2、A【解析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限. 故答案为:A【点睛】考核知识点:点的坐标与象限的关系.3、D【解析】根据点M(a,2a)在反比例函数y的图象上,可得:,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y的图象上,可得:,解得:,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.4、B【解析】根据同

11、底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a32a3,故A错误;B、a6a2a4,故B正确;C、a3a5a8,故C错误;D、(a3)4a12,故D错误故选:B【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.5、C【解析】分析:先求出每个数的范围,逐一分析得出选项.详解:A、34,故本选项不符合题意;B、122,故本选项不符合题意;C、23,故本选项符合题意;D、34,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.6、A【解析】根据正多边形的外角与它对应的内角互补,得到这个正多

12、边形的每个外角=180150=30,再根据多边形外角和为360度即可求出边数【详解】一个正多边形的每个内角为150,这个正多边形的每个外角=180150=30,这个正多边形的边数=1故选:A【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质7、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】2000亿元=2.01故选:C【点睛】考查科学记数法的表示方法科学记数法的表

13、示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、A【解析】试题分析:O1和O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5345+3,根据圆心距与半径之间的数量关系可知O1与O2相交故选A考点:圆与圆的位置关系9、D【解析】错误由题意a1b1,c1,abc1;正确因为y1=ax2+bx+c(a1)图象与直线y2=mx+n(m1)交于A,B两点,当ax2+bx+cmx+n时,-3x-1;即不等式ax2+(b-m)x+c-n1的解集为-3x-1;故正确;错误抛物线与x轴的另一个交点是(1,1);正确抛物线y1=ax2+bx+c(a1)图象与直线

14、y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故正确【详解】解:抛物线开口向上,a1,抛物线交y轴于负半轴,c1,对称轴在y轴左边,- 1,b1,abc1,故错误y1=ax2+bx+c(a1)图象与直线y2=mx+n(m1)交于A,B两点,当ax2+bx+cmx+n时,-3x-1;即不等式ax2+(b-m)x+c-n1的解集为-3x-1;故正确,抛物线与x轴的另一个交点是(1,1),故错误,抛物线y1=ax2+bx+c(a1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故正确故选:D【点睛】本题考查二次函数的性质、二次函数与不等式,二

15、次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题10、D【解析】根据直径所对的圆周角为直角可得BAE=90,再根据直角三角形的性质和平行四边形的性质可得解.【详解】根据直径所对的圆周角为直角可得BAE=90,根据E=36可得B=54,根据平行四边形的性质可得ADC=B=54.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.二、填空题(共7小题,每小题3分,满分21分)11、25【解析】试题解析:由题意 12、-【解析】直接利用分式的混合运算法则即可得出.【详解】原式,.故答案为.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键

16、.13、【解析】过D点作DFAB于点FAD=1,AB=4,A=30,DF=ADsin30=1,EB=ABAE=1阴影部分的面积=平行四边形ABCD的面积扇形ADE面积三角形CBE的面积=.故答案为:.14、【解析】试题解析:一个布袋里装有2个红球和5个白球,摸出一个球摸到红球的概率为:考点:概率公式15、10【解析】根据线段的垂直平分线得出AD=BD,AE=CE,推出B=BAD,C=CAE,求出BAD+CAE的度数即可得到答案【详解】点D、E分别是AB、AC边的垂直平分线与BC的交点,AD=BD,AE=CE,B=BAD,C=CAE,B=40,C=45,B+C=85,BAD+CAE=85,DAE

17、=BAC-(BAD+CAE)=180-85-85=10,故答案为10【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键16、2ab【解析】直接利用数轴上a,b的位置进而得出ba0,a0,再化简得出答案【详解】解:由数轴可得:ba0,a0,则|ba|+=ab+a=2ab故答案为2ab【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键17、(a+b)2=a2+2ab+b2【解析】完全平方公式的几何背景,即乘法公式的几何验证此类题型可从整体和部分两个方面分析问题本题从整体来看,整个图形为

18、一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:, 【点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.三、解答题(共7小题,满分69分)18、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)n 【解析】(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N的坐

19、标代入y=x2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y3,当x=3时y2,据此列出关于n的不等式组,解之可得【详解】(1)A(2,2),B(3,2),D(2,3),ADBC1, 则点 C(3,3),故答案为:(3,3);(2)把(0,0)(n,0)代入 yx2+bx+c 得: ,解得:,抛物线解析式为 yx2+nx(x)2+,顶点 N 坐标为(,);(3)由(2)把 x代入 yx2()2 ,抛物线的顶点在函数 yx2的图象上运动;(4)根据题意,得:当 x2 时 y3,当 x3 时 y2, 即,解得:n【点睛】本题主要考查二次函数的应用,解

20、题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力19、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)若全部销售完,方案一获利最大,最大利润是1800元【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结

21、论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)设购进甲种纪念品a(a60)件,则购进乙种纪念品(80a)件由题意得:100a+50(80a)7100解得a1又a60所以a可取60、61、1即有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)设利润为W,则W=20a+30(80a)=10a+2

22、400所以W是a的一次函数,100,W随a的增大而减小所以当a最小时,W最大此时W=1060+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.20、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),【解析】(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=O

23、B,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;(3)存在这样的点P,使得QPO=OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标【详解】解:(1)设直线AB解析式为y=kx+b,把A(4,0),B(0,2)代入得:,解得:,直线AB的解析式为y=x2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=;(2)连接BQ,则易得PQOB,且PQ=OB,四边形PQBO是平行四边形,OP=BQ,OP+AQ=BQ+AQAB=2,(等号成立的条件是

24、点Q在线段AB上),直线AB的解析式为y=x2,可设此时点Q的坐标为(t,t2),于是,此时点P的坐标为(t,t),点P在抛物线y=x2上,t=t2,解得:t=0或t=1,当t=0,点P与点O重合,不合题意,应舍去,OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),则tanHPO=,又,易得tanOBC=,当tanHPO=tanOBC时,可使得QPO=OBC,于是,得,解得:m=4,所以P(4,8)或(4,8)【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函

25、数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键21、 (1)CD=;(2)m= ;(3) n的值为或 【解析】分析:(1)过点作,垂足为点,连接解Rt,得到的长由勾股定理得的长,再由垂径定理即可得到结论; (2)解Rt,得到和Rt中,由勾股定理即可得到结论; (3)成为等腰三角形可分以下几种情况讨论: 当圆心、在弦异侧时,分和当圆心、在弦同侧时,同理可得结论详解:(1)过点作,垂足为点,连接在Rt, 6, 由勾股定理得: ,(2)在Rt,在Rt中,在Rt中,可得: ,解得(3)成为等腰三角形可分以下几种情况: 当圆心、在弦异侧时i),即,由,解得即圆心距等于、的半

26、径的和,就有、外切不合题意舍去ii),由 ,解得:,即 ,解得当圆心、在弦同侧时,同理可得: 是钝角,只能是,即,解得综上所述:n的值为或点睛:本题是圆的综合题考查了圆的有关性质和两圆的位置关系以及解直径三角形解答(3)的关键是要分类讨论22、7.6 m【解析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长【详解】解:由题意,BDC45,ADC50,ACD90,CD40 m在RtBDC中,tanBDCBCCD40 m在RtADC中,tanADCAB7.6(m)答:旗杆AB的高度约为7.6 m【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键23、

27、(1)见解析,(2)CFcm.【解析】(1)要求证:BF=BC只要证明CFB=FCB就可以,从而转化为证明BCE=BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角BCD中,根据三角形的面积等于BDCE=BCDC,就可以求出CE的长要求CF的长,可以在直角CEF中用勾股定理求得其中EF=BF-BE,BE在直角BCE中根据勾股定理就可以求出,由此解决问题【详解】证明:(1)四边形ABCD是矩形,BCD90,CDB+DBC90CEBD,DBC+ECB90ECBCDBCFBCDB+DCF,BCFECB+ECF,DCFECF,CFBBCFBFBC(2)

28、四边形ABCD是矩形,DCAB4(cm),BCAD3(cm)在RtBCD中,由勾股定理得BD又BDCEBCDC,CEBEEFBFBE3CFcm【点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题24、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=80,FN=100sin8098,EFG=125,EFM=18012510=45,FM=66cos45=46.53,MN=FN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin4546.53,PH46.53,GN=100cos8017,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁