《宁夏银川市兴庆区银川一中2023届高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《宁夏银川市兴庆区银川一中2023届高考全国统考预测密卷数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,函数,若函数恰有三个零点,则( )ABCD2的展开式中的系数是( )A160B240C280D3203已知的展开式中
2、的常数项为8,则实数( )A2B-2C-3D34已知Sn为等比数列an的前n项和,a516,a3a432,则S8( )A21B24C85D855设,是方程的两个不等实数根,记().下列两个命题( )数列的任意一项都是正整数;数列存在某一项是5的倍数.A正确,错误B错误,正确C都正确D都错误6执行如下的程序框图,则输出的是( )ABCD7已知函数是奇函数,且,若对,恒成立,则的取值范围是( )ABCD8已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为( )ABCD9在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则( )ABCD10已知函数,则函数的零点所在区间
3、为( )ABCD11已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD12已知向量,夹角为, ,则( )A2B4CD二、填空题:本题共4小题,每小题5分,共20分。13已知,那么_.14已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_时,外心的横坐标最大15已知,为虚数单位,且,则=_.16已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,若线段的垂直平分线与轴交点的横坐标为,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某公司生产的某种产品,
4、如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.0
5、1).附:线性回归方程中, ,.18(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.19(12分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.20(12分)设不等式的解集为M,.(1
6、)证明:;(2)比较与的大小,并说明理由.21(12分)已知函数(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间22(10分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】当时,最多一个零点;当时,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得【详解】当时,得;最多一个零点;当时,当,即时,在,上递增,最多一个零点不合题意;当,即时,令得,函数递增,令得,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数
7、在上有一个零点,在,上有2个零点,如图:且,解得,故选【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.2、C【解析】首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.3、A【解析】先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开
8、式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.4、D【解析】由等比数列的性质求得a1q416,a12q532,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列an的公比为q,a516,a3a432,a1q416,a12q532,q2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.5、A【解析】利用韦达定理可得,结合可推出,再计算出,从而推出正确;再利用递推公
9、式依次计算数列中的各项,以此判断的正误.【详解】因为,是方程的两个不等实数根,所以,因为,所以,即当时,数列中的任一项都等于其前两项之和,又,所以,以此类推,即可知数列的任意一项都是正整数,故正确;若数列存在某一项是5的倍数,则此项个位数字应当为0或5,由,依次计算可知,数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,故数列中不存在个位数字为0或5的项,故错误;故选:A.【点睛】本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.6、A【解析】列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,;成立,执行第二次循环
10、,;成立,执行第三次循环,;成立,执行第四次循环,;成立,执行第五次循环,;成立,执行第六次循环,;成立,执行第七次循环,;成立,执行第八次循环,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.7、A【解析】先根据函数奇偶性求得,利用导数判断函数单调性,利用函数单调性求解不等式即可.【详解】因为函数是奇函数,所以函数是偶函数.,即,又,所以,.函数的定义域为,所以,则函数在上为单调递增函数.又在上,所以为偶函数,且在上单调递增.由,可得,对恒成立,则,对恒成立,得,所以的取值范围是.故
11、选:A.【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.8、C【解析】不妨设在第一象限,故,根据得到,解得答案.【详解】不妨设在第一象限,故,即,即,解得,(舍去).故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.9、B【解析】设,则,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,因为B,P,D三点共线,C,P,E三点共线,所以,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.10、A【解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令
12、,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.11、B【解析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当且仅当时取等号,此时,点在以为焦点的椭圆
13、上,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解12、A【解析】根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.【详解】,.故答案为:.【点睛】本小题主要考查诱导公式、同角三角函数的基本
14、关系式,属于基础题.14、【解析】由已知可得、的坐标,求得的垂直平分线方程,联立已知直线方程与椭圆方程,求得的垂直平分线方程,两垂直平分线方程联立求得外心的横坐标,再由导数求最值【详解】如图,由已知条件可知,不妨设,则外心在的垂直平分线上,即在直线,也就是在直线上,联立,得或,的中点坐标为,则的垂直平分线方程为,把代入上式,得,令,则,由,得(舍)或当时,当时,.当时,函数取极大值,亦为最大值故答案为:.【点睛】本题考查直线与椭圆位置关系的应用,训练了利用导数求最值,是中等题15、4【解析】解:利用复数相等,可知由有16、1【解析】设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义
15、得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论【详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,所以,所以.故答案为:1【点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)先判断得到随机变量的所有可能取值,然后根据古典概型概率公式和组合数计算得到相应的概率,进而得到分布列和期望(2)由于去掉年的数据后不影响的值,可根据表中数据求出;然后再根据去掉年的数据后所剩数据求出即可得到回归直线方程【详解】(1)由数据可知,五个年份考
16、核优秀由题意的所有可能取值为,故的分布列为:所以(2)因为,所以去掉年的数据后不影响的值,所以又去掉年的数据之后,所以,从而回归方程为:【点睛】求线性回归方程时要涉及到大量的计算,所以在解题时要注意运算的合理性和正确性,对于题目中给出的中间数据要合理利用本题考查概率和统计的结合,这也是高考中常出现的题型,属于基础题18、(1);(2).【解析】(1)过作的垂线,垂足为,易得,进一步可得;(2)利用导数求得最大值即可.【详解】(1)如图,过作的垂线,垂足为,在直角中,所以,同理,.(2)设,则,令,则,即.设,且,则当时,所以单调递减;当时,所以单调递增,所以当时,取得极小值,所以.因为,所以,
17、又,所以,又,所以,所以,所以,所以能通过此钢管的铁棒最大长度为.【点睛】本题考查导数在实际问题中的应用,考查学生的数学运算求解能力,是一道中档题.19、(1),.(2)【解析】(1)根据直线的参数方程为(为参数),消去参数,即可求得的的普通方程,曲线的极坐标方程为,利用极坐标化直角坐标的公式: ,即可求得答案;(2)的标准方程为,圆心为,半径为,根据点到直线距离公式,即可求得答案.【详解】(1)直线的参数方程为(为参数),消去参数的普通方程为.曲线的极坐标方程为,利用极坐标化直角坐标的公式:的直角坐标方程为.(2)的标准方程为,圆心为,半径为圆心到的距离为,点到的距离的取值范围是.【点睛】本
18、题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.20、 (1)证明见解析;(2).【解析】试题分析:(1)首先求得集合M,然后结合绝对值不等式的性质即可证得题中的结论;(2)利用平方做差的方法可证得|1-4ab|2|a-b|.试题解析:()证明:记f (x) =|x-1|-|x+2|,则f(x)= ,所以解得-x,故M=(-,).所以,|a|+|b|+=.()由()得0a2,0b2.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)0.所以,|1-4ab|2|a-b|.21、(1)
19、;(2)见解析【解析】(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜截式方程可以求出曲线的切线方程;(2)对函数进行求导,对实数进行分类讨论,可以求出函数的单调区间【详解】(1)当时,函数定义域为,,所以切线方程为;(2)当时,函数定义域为,在上单调递增当时,恒成立,函数定义域为,又在单调递增,单调递减,单调递增当时,函数定义域为,在单调递增,单调递减,单调递增当时,设的两个根为且,由韦达定理易知两根均为正根,且,所以函数的定义域为,又对称轴,且,在单调递增,单调递减,单调递增【点睛】本题考查了曲线切线方程的求法,考查了利用函数的导数讨论函数的单调性问题,考查了分类思想.22、(1)极小值点为,极小值为,无极大值;(2)证明见解析【解析】先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求【详解】(1)由题得函数的定义域为.,由已知得,解得 , 令,得令,得,在上单调递增.令,得在上单调递减 的极小值点为,极小值为,无极大值.(2)证明:由(1)知,令,即 , 恒成立.在上单调递增又,在上恒成立在上恒成立, 即【点睛】本题考查了利用导数研究函数的极值问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平,属于中档题