四川省达州市第一中学2023年中考数学最后冲刺模拟试卷含解析.doc

上传人:lil****205 文档编号:87997743 上传时间:2023-04-19 格式:DOC 页数:22 大小:1.26MB
返回 下载 相关 举报
四川省达州市第一中学2023年中考数学最后冲刺模拟试卷含解析.doc_第1页
第1页 / 共22页
四川省达州市第一中学2023年中考数学最后冲刺模拟试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《四川省达州市第一中学2023年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省达州市第一中学2023年中考数学最后冲刺模拟试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一元二次方程的根的情况是( )A有一个实数根B有两个相等的实数根C有两个不相等的实数根D没有实数根2甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()ABCD3如图,在中,D、E分别在边AB、AC上,交AB于F,那么下列比例式中正确的是ABCD4如图,ABC中,B=55,C=30,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连

3、结AD,则BAD的度数为( )A65B60C55D455对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A平均数是3B中位数是3C众数是3D方差是2.56有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()b0a; |b|a|; ab0; aba+bABCD7如图,从一块圆形纸片上剪出一个圆心角为90的扇形ABC,使点A、B、C在圆周上,将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )A12cmB20cmC24cmD28cm8随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有

4、210万,请将“210万”用科学记数法表示为( )ABCD9不等式组的解集是()Ax1Bx2C1x2D1x210如图,直线l1l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC若ABC=67,则1=()A23B46C67D7811为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,1,x,2,1,1若这组数据的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是112用配方法解下列方程时,配方有错误的是( )A化为B化为C化为D化为二、填空题:(本大题共6个小题,每小题4分,共24分)13如

5、图ABC中,C=90,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cosBDC=,则BC的长为_14如图,在四边形中,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动若,当_时,是等腰三角形15关于的一元二次方程有两个不相等的实数根,则实数的取值范围是_16已知A(x1,y1),B(x2,y2)都在反比例函数y的图象上若x1x24,则y1y2的值为_17如图,在33的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_.1

6、8某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10,则该商品每件的进价为_元三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F 求证:ABECAD;求BFD的度数.20(6分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF(1)求证:四边形ACDF是平行四边形;(2)当CF平分BCD时,写出BC与CD的数量关系,并说明理由21(6分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部

7、分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?22(8分)已知抛物线y=ax2+ c(a0)(1)若抛物线与x轴交于点B(4,0),且过点P(1,3),求该抛物线的解析式;(2)若a0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);(3)若a0,c 0,抛物线与x轴交于A,B两点(A在B左边),顶点为C

8、,点P在抛物线上且位于第四象限直线PA、PB与y轴分别交于M、N两点当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由23(8分)计算:sin30tan60+.24(10分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)

9、设点F的横坐标为x(4x4),解决下列问题:当点G与点D重合时,求平移距离m的值;用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD是否存在点F,使FDP与FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由25(10分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_人,被调查学生的课外阅读时间的中位数是_小时,众数是_小时;并补全条形统计图;(2)在扇形统计图中

10、,课外阅读时间为5小时的扇形的圆心角度数是_;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?26(12分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60,试通过计算求出文峰塔的高度CD(结果保留两位小数)27(12分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AEBF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边C

11、D,AD上,AEBF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系; 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】试题分析:=22-44=-120,故没有实数根;故选D考点:根的判别式2、B【解析】匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答【详解】甲、乙两人分别以4m/s和5m/s的速度,两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s1m/s=20m,故选

12、B【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答3、C【解析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断【详解】A、EFCD,DEBC,CEAC,故本选项错误;B、EFCD,DEBC,ADDF,故本选项错误;C、EFCD,DEBC,故本选项正确;D、EFCD,DEBC,ADDF,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健4、A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到

13、C=DAC,求得DAC=30,根据三角形的内角和得到BAC=95,即可得到结论【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故C=DAC,C=30,DAC=30,B=55,BAC=95,BAD=BAC-CAD=65,故选A【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键5、D【解析】根据平均数、中位数、众数和方差的定义逐一求解可得【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2=2.8,错误;故

14、选:D【点睛】本题考查了众数、平均数、中位数、方差平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量6、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b0|a|,故错误,因为b0a,所以aba+b,所以正确.故选B.7、C【解析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即

15、可得到这块圆形纸片的直径【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:2r=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm故选C【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长8、B【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】210万=2100000,2100000=2.1106,故选B【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|

16、a|10,n为整数,表示时关键要正确确定a的值以及n的值9、D【解析】由x1得,x1,由3x51得,3x6,x2,不等式组的解集为1x2,故选D10、B【解析】根据圆的半径相等可知AB=AC,由等边对等角求出ACB,再由平行得内错角相等,最后由平角180可求出1.【详解】根据题意得:AB=AC,ACB=ABC=67,直线l1l2,2=ABC=67,1+ACB+2=180,ACB=180-1-ACB=180-67-67=46故选B【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.11、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)6=-

17、1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2=2故选A12、B【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方【详解】解:、,故选项正确、,故选项错误、,故选项正确、,故选项正确故选:【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数二、填空题:(本大题共6个小题,每小题4分,共24分)13、4【解析】

18、试题解析: 可设DC=3x,BD=5x,又MN是线段AB的垂直平分线,AD=DB=5x,又AC=8cm,3x+5x=8,解得,x=1,在RtBDC中,CD=3cm,DB=5cm, 故答案为:4cm.14、或【解析】根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t【详解】解:由运动知,是等腰三角形,且,当时,过点P作PEAD于点E点在的垂直平分线上, QE=,AE=BP,当时,如图,过点作于,四边形是矩形,在中,点在边上,不和重

19、合,此种情况符合题意,即或时,是等腰三角形故答案为:或【点睛】此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键15、b9【解析】由方程有两个不相等的实数根结合根的判别式,可得出,解之即可得出实数b的取值范围【详解】解:方程有两个不相等的实数根,解得:【点睛】本题考查的知识点是根的判别式,解题关键是牢记“当时,方程有两个不相等的实数根”16、1【解析】根据反比例函数图象上点的坐标特征得到 再把它们相乘,然后把代入计算即可【详解】根据题意得所以故答案为:1.【点睛】考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.17

20、、.【解析】找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论【详解】从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,所画三角形时等腰三角形的概率是,故答案是:【点睛】考查的是概率公式,熟记随机事件A的概率P(A)事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键18、1【解析】试题分析:设该商品每件的进价为x元,则15080%10xx10%,解得 x1即该商品每件的进价为1元故答案为1点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系三、解答题:

21、(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2).【解析】试题分析:(1)根据等边三角形的性质根据SAS即可证明ABECAD;(2)由三角形全等可以得出ABE=CAD,由外角与内角的关系就可以得出结论试题解析:(1)ABC为等边三角形,AB=BC=AC,ABC=ACB=BAC=60在ABE和CAD中,AB=CA, BAC=C,AE =CD, ABECAD(SAS),(2)ABECAD,ABE=CAD,BAD+CAD=60,BAD+EBA=60,BFD=ABE+BAD,BFD=6020、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分

22、析:(1)利用矩形的性质,即可判定FAECDE,即可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;(2)先判定CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD详解:(1)四边形ABCD是矩形,ABCD,FAE=CDE,E是AD的中点,AE=DE,又FEA=CED,FAECDE,CD=FA,又CDAF,四边形ACDF是平行四边形;(2)BC=2CD证明:CF平分BCD,DCE=45,CDE=90,CDE是等腰直角三角形,CD=DE,E是AD的中点,AD=2CD,AD=BC,BC=2CD点睛:本题主要考查了矩

23、形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的21、(1)25, 90;(2)见解析;(3)该市 “活动时间不少于5天”的大约有1【解析】试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90;(2)“活动时间为6天” 的人数,如图所示:(3)“活动

24、时间不少于5天”的学生人数占75%,2000075%=1该市“活动时间不少于5天”的大约有1人考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.22、(1);(2)详见解析;(3)为定值,=【解析】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),用待定系数法求解即可;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),由AOEOBF,可得到,然后表示出直线AB的解析式即可得到结论;(3)作PQAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2+c=0, c= at2 由PQON,可得ON=amt+a

25、t2,OM= amt+at2,然后把ON,OM,OC的值代入整理即可.【详解】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),解之得 ,;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),OAOB,AOE=OBF,AOEOBF,直线AB过点A(m,am2)、点B(n,an2),过点(0,);(3)作PQAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2+c=0, c= at2 PQON,ON=at(m+t)= amt+at2,同理:OM= amt+at2,所以,OM+ON= 2at2=2c=OC,所以,=.【点睛】本题考查了待

26、定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.23、 【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=.24、(3)(4,6);(3)-3;4;(2)F的坐标为(3,0)或(3,)【解析】(3)先将A(3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4,6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GFx轴,故可得F的纵坐标, 再将

27、y=2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据FDP与FDG的面积比为3:3,故PD:DG=3:3已知FPHD,则FH:HG=3:3再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(3,0),B(4,0),代入y=ax3+bx+2得:,解得:,抛物线的表达式为y=x3+x+2,把E(4,y)代入得:y=6,点E的坐标为(4,6)(3)设直线BD的表达式为y=k

28、x+b,将B(4,0),E(4,6)代入得:,解得:,直线BD的表达式为y=x2把x=0代入y=x2得:y=2,D(0,2)当点G与点D重合时,G的坐标为(0,2)GFx轴,F的纵坐标为2将y=2代入抛物线的解析式得:x3+x+2=2,解得:x=+3或x=+34x4,点F的坐标为(+3,2)m=FG=3设点F的坐标为(x,x3+x+2),则点G的坐标为(x+m,(x+m)2),x3+x+2=(x+m)2,化简得,m=x3+4,0,m有最大值,当x=0时,m的最大值为4(2)当点F在x轴的左侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标

29、为(x,x3+x+2),则点G的坐标为(3x,x2),x3+x+2=x2,整理得:x36x36=0,解得:x=3或x=4(舍去),点F的坐标为(3,0)当点F在x轴的右侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标为(3x, x2),x3+x+2=x2,整理得:x3+3x36=0,解得:x=3或x=3(舍去),点F的坐标为(3,)综上所述,点F的坐标为(3,0)或(3,)【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.25、(1)50;4;5;画图见解析;(2)144;(3)

30、64【解析】(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可【详解】解:(1)课外阅读达3小时的共10人,占总人数的20%,=50(人)课外阅读4小时的人数是32%,5032%=16(人),男生人数=168=8(人);课外阅读6小时的人数=5064888123=1(人),课外阅读3小时的是10

31、人,4小时的是16人,5小时的是20人,6小时的是4人,中位数是4小时,众数是5小时补全图形如图所示故答案为50,4,5;(2)课外阅读5小时的人数是20人,360=144故答案为144;(3)课外阅读6小时的人数是4人,800=64(人)答:九年级一周课外阅读时间为6小时的学生大约有64人【点睛】本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.26、51.96米【解析】先根据三角形外角的性质得出ACB=30,进而得出AB=BC=1,在RtBDC中,,即可求出CD的长【详解】解:CBD=1,CAB=30,ACB=30AB=BC=1在RtBDC中,

32、(米)答:文峰塔的高度CD约为51.96米【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答27、(1)证明见解析;(2)AE=BF,(3)AE=BF;【解析】(1)根据正方形的性质,可得ABC与C的关系,AB与BC的关系,根据两直线垂直,可得AMB的度数,根据直角三角形锐角的关系,可得ABM与BAM的关系,根据同角的余角相等,可得BAM与CBF的关系,根据ASA,可得ABEBCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到ABC=C,由余角的性质得到BAM=CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF证明方法类似(2);【详解

33、】(1)证明:四边形ABCD是正方形,ABC=C,AB=BCAEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF在ABE和BCF中,ABEBCF(ASA),AE=BF;(2)解:如图2中,结论:AE=BF,理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF,ABEBCF,AE=BF(3)结论:AE=BF理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF,ABEBCF,AE=BF【点睛】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁