四川省成都实验中学2022-2023学年高三第二次调研数学试卷含解析.doc

上传人:lil****205 文档编号:87997113 上传时间:2023-04-19 格式:DOC 页数:19 大小:1.81MB
返回 下载 相关 举报
四川省成都实验中学2022-2023学年高三第二次调研数学试卷含解析.doc_第1页
第1页 / 共19页
四川省成都实验中学2022-2023学年高三第二次调研数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《四川省成都实验中学2022-2023学年高三第二次调研数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都实验中学2022-2023学年高三第二次调研数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( )ABCD2已知向量

2、,且,则m=( )A8B6C6D83聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则( )A48B63C99D1204已知向量,则与的夹角为( )ABCD5在等腰直角三角形中,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为( ).ABCD6函数图像可能是( )ABCD72019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.

3、武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )ABCD8若双曲线:的一条渐近线方程为,则( )ABCD9音乐,是用声音来展

4、现美,给人以听觉上的享受,熔铸人们的美学趣味著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波下列函数中不能与函数构成乐音的是( )ABCD10集合的真子集的个数为( )A7B8C31D3211已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()ABCD12已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设是

5、定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_时,为的几何平均数.(只需写出一个符合要求的函数即可)14已知函数,则下列结论中正确的是_.是周期函数;的对称轴方程为,;在区间上为增函数;方程在区间有6个根.15曲线在处的切线的斜率为_.16已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设等比数列的前项和为,若()求数列的通项公式;()在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.18(12分)据人民网报道,美国国家

6、航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西2976

7、42184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的

8、地区的个数,求X的分布列及数学期望.19(12分)已知实数x,y,z满足,证明:.20(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.(1)求曲线的方程;(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,求证:为定值.21(12分)已知函数(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围22(10分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符

9、合题目要求的。1、B【解析】由题意可得的周期为,当时,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【详解】是定义域为R的偶函数,满足任意,令,又,为周期为的偶函数,当时,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.2、D【解析】由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案【详解】,又,34+(2)(m2)0,解得m1

10、故选D【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题3、C【解析】观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.4、B【解析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,由于向量夹角范围为:,.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.5、D【解析】如图,将四面体放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下

11、底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径.【详解】中,易知, 翻折后, ,设外接圆的半径为, , ,如图:易得平面,将四面体放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为, , 四面体的外接球的表面积为.故选:D【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径 容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.6、D【解析】先判断函数的奇偶性

12、可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.7、A【解析】根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,.即设,则当且仅当即时取等号,即.故选:A【点睛】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应

13、用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.8、A【解析】根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【点睛】本小题主要考查双曲线的渐近线,属于基础题.9、C【解析】由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.10、A【解析】计算,再计算真子集个数得到答案.【详解】,故真子集个

14、数为:.故选:.【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.11、A【解析】利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,则的渐近线方程为故选A【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.12、B【解析】根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】双曲线与的渐近线相同,且焦点在轴上,可设双曲线的方程为,一个焦点为,故的标准方程为.故选:B【点睛】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉

15、考虑焦点所在坐标轴导致方程形式出错.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为: .【点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.14、【解析】由函数,对选项逐个验证即得答案.【详解】函数,是周期函数,最小正周期为,故正确;当或时,有最大值或最小值,此时或,即或,即.的对称轴方程为,故正确;当时,此时在上单调递减,在上单调递增,在区间上不是增函数,故错误;作出函数的部分图象,如图所示

16、方程在区间有6个根,故正确.故答案为:.【点睛】本题考查三角恒等变换,考查三角函数的性质,属于中档题.15、【解析】求出函数的导数,利用导数的几何意义令,即可求出切线斜率.【详解】,即曲线在处的切线的斜率.故答案为:【点睛】本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.16、2【解析】由题,得,然后根据纯虚数的定义,即可得到本题答案.【详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【点睛】本题主要考查纯虚数定义的应用,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();()详见解析.【解析】(),两式相减化简整理利用等比数

17、列的通项公式即可得出()由题设可得,可得,利用错位相减法即可得出【详解】解:()因为,故,两式相减可得,故,因为是等比数列,又,所以,故,所以;()由题设可得,所以,所以,则,得:,所以,得证.【点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题18、(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【解析】(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后

18、可得结果.(3)计算退化林修复面积超过一万公顷的地区中选两个地区总数,退化林修复面积超过六万公顷的地区的个数为,列出所有取值并计算相应概率,然后可得结果.【详解】(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2)记事件A:在这十个地区中,任选一个地区,该地区新封山育林面积占总面积的比值超过根据数据可知:青海地区人工造林面积占总面积比超过,则(3)退化林修复面积超过一万公顷有6个地区:内蒙、河北、河南、重庆、陕西、新疆,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,随机变量X的分布列如下:【点睛】本题考查数

19、据的处理以及离散型随机变量的分布列与数学期望,审清题意,细心计算,属基础题.19、见解析【解析】已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【详解】,.由柯西不等式得,.【点睛】本题考查柯西不等式的应用,属于基础题.20、(1);(2)见解析【解析】(1)已知点轨迹是以为焦点,直线为准线的抛物线,由此可得曲线的方程;(2)设直线方程为,则,设,由直线方程与抛物线方程联立消元应用韦达定理得,由,用横坐标表示出,然后计算,并代入,可得结论【详解】(1)设动圆圆心,由抛物线定义知:点轨迹是以为焦点,直线为准线的抛物线,设其方程为,则,解得曲线的方程为;(2)证明:

20、设直线方程为,则,设,由得,则,由,得,整理得,代入得:【点睛】本题考查求曲线方程,考查抛物线的定义,考查直线与抛物线相交问题中的定值问题解题方法是设而不求的思想方法,即设交点坐标,设直线方程,直线方程代入抛物线(或圆锥曲线)方程得一元二次方程,应用韦达定理得,代入题中其他条件所求式子中化简变形21、 (1)x=1 (2)证明见解析 (3) 【解析】(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证 ,即证 ,即证,构造函数进而求证;(3)不等式 对一切正实数恒成立,设,分类讨论进而求解【详解】解:(1)令,所以,当时,在上单调递增;当时,在单调递减;所以,所以

21、的零点为(2)由题意, ,要证 ,即证,即证,令,则,由(1)知,当且仅当时等号成立,所以,即,所以原不等式成立(3)不等式 对一切正实数恒成立,设,记,当时,即时,恒成立,故单调递增于是当时,又,故,当时,又,故,又当时,因此,当时,当,即时,设的两个不等实根分别为,又,于是,故当时,从而在单调递减;当时,此时,于是,即 舍去,综上,的取值范围是【点睛】(1)考查函数求导,根据导函数确定函数的单调性,零点;(2)考查转化思想,构造函数求极值;(3)考查分类讨论思想,函数的单调性,函数的求导;属于难题.22、 (1)a=-1,b=1;(2)-1.【解析】(1)对求导得,根据函数的图象在处的切线

22、为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.(1),.由题意知. (2)由(1)知:,对任意恒成立对任意恒成立对任意恒成立. 令,则.由于,所以在上单调递增. 又,所以存在唯一的,使得,且当时,时,. 即在单调递减,在上单调递增.所以.又,即,. . , . 又因为对任意恒成立,又, . 点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁