《四川省广元天立学校2022-2023学年高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省广元天立学校2022-2023学年高三第二次模拟考试数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则( )ABC3D42要得到函数的图象,只需将函数的图象A向左平移个单位长度B向右平移个单位长度
2、C向左平移个单位长度D向右平移个单位长度3运行如图程序,则输出的S的值为() A0B1C2018D20174已知函数,则不等式的解集为( )ABCD5设,均为非零的平面向量,则“存在负数,使得”是“”的A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件6已知三棱锥PABC的顶点都在球O的球面上,PA,PB,AB4,CACB,面PAB面ABC,则球O的表面积为( )ABCD7在中,角、所对的边分别为、,若,则( )ABCD8数列满足:,则数列前项的和为ABCD9要得到函数的图象,只需将函数的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位10如图1,九章算
3、术中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺. ABCD11已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为( )A9B7CD12下列函数中,既是偶函数又在区间上单调递增的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有_种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).14在三棱锥中
4、,三条侧棱两两垂直,则三棱锥外接球的表面积的最小值为_.15已知,的夹角为30,则_.16在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,求的取值范围.18(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示()求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);()填写下面的列联
5、表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”女生男生总计获奖不获奖总计附表及公式:其中,19(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值20(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长21(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市
6、民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若
7、,则,22(10分)如图, 在四棱锥中, 底面是矩形, 四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.2、D【解析】先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.3、D【解析】依次运行程序框
8、图给出的程序可得第一次:,不满足条件;第二次:,不满足条件;第三次:,不满足条件;第四次:,不满足条件;第五次:,不满足条件;第六次:,满足条件,退出循环输出1选D4、D【解析】先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.5、B【解析】根据充分条件、必要条件的定义进行分析、判断后可得结论【详解】因为,均为非零的平面向量,存在负数,使得,所以
9、向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立所以“存在负数,使得”是“”的充分不必要条件故选B【点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确6、D【解析】由题意画出图形,找出PAB外接圆的圆心及三棱锥PBCD的外接球心O,通过求解三角形求出三棱锥PBCD的外接球的半径,则答案可求.【详解】如图;设AB的中点为D;PA,PB,AB4,PAB为直角三角形,且斜边为AB,故其外接圆半径为:
10、rABAD2;设外接球球心为O;CACB,面PAB面ABC,CDAB可得CD面PAB;且DC.O在CD上;故有:AO2OD2+AD2R2(R)2+r2R;球O的表面积为:4R24.故选:D.【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.7、D【解析】利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.8、A【解析】分析:通过对anan+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可详解:,又=5,即,数列前项的和为,故选A点睛:裂项相消法是最难
11、把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9、D【解析】直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位故选:D【点睛】本题考查三角函数图象平移的应用问题,属于基础题10、B【解析】如图,已知,解得, ,解得.折断后的竹干高为4.55尺故选B.11、C【解析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利
12、用均值不等式即可容易求得.【详解】设,则.因为平面,平面,所以.又,所以平面,则.易知,.在中,即,化简得.在中,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.12、C【解析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.二、填空题:本题共4小题
13、,每小题5分,共20分。13、192【解析】根据题意,分步进行分析:,在三对父子中任选1对,安排在相邻的位置上,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案【详解】根据题意,分步进行分析:,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题14、【解析】设,可表示出,由三棱锥性质得这三条棱长的平方和
14、等于外接球直径的平方,从而半径的最小值,得外接球表面积【详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方记外接球半径为,当时,故答案为:【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和15、1【解析】由求出,代入,进行数量积的运算即得.【详解】,存在实数,使得.不共线,.,的夹角为30,.故答案为:1.【点睛】本题考查向量共线定理和平面向量数量积的运算,属于基础题.16、【解析】取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得, 由等腰直角三角形的性质,得,根据面面垂直
15、的性质得平面,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:【点睛】本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)【解析】(1)由于函数,得出,分类讨论当和时,的正负,进
16、而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【详解】解:(1)因为, 所以,当时,在上单调递减.当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,令,得.设,则.当时,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,符合题意.当时,所以有唯一实根,当时,在上单调递增,不符合题意.综上,即的取值范围为.【点睛】本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分
17、类讨论思想和计算能力,属于难题.18、(),;()详见解析.【解析】()根据概率的性质知所有矩形的面积之和等于列式可解得; ()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得【详解】解:(),()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,列联表如下:女生男生总计获奖不获奖总计因为,所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关”【点睛】本题主要考查独立性检验,以及由频率分布直方图求平均数的问题,熟记独立性检验的思想,以及平均数的计算方法即可,属于常考题型.19、(1)曲线的直角坐标方程为,曲线的参数方程为为参数(2)【
18、解析】(1)将代入,可得,所以曲线的直角坐标方程为由可得,将,代入上式,可得,整理可得,所以曲线的参数方程为为参数(2)由题可设,所以,所以,因为,所以,所以当,即时,l取得最大值为,所以的周长的最大值为20、(1)见解析; (2).【解析】(1)分斜率为0,斜率不存在,斜率不为0三种情况讨论,设的方程为,可求解得到,可得到的距离为1,即得证;(2)表示的面积为,利用均值不等式,即得解.【详解】(1)由题意,椭圆的焦点在x轴上,且,所以所以椭圆的方程为由点在直线上,且知的斜率必定存在,当的斜率为0时,于是,到的距离为1,直线与圆相切当的斜率不为0时,设的方程为,与联立得,所以,从而而,故的方程
19、为,而在上,故,从而,于是此时,到的距离为1,直线与圆相切综上,直线与圆相切(2)由(1)知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1此时,点在椭圆的长轴端点,为不妨设为长轴左端点,则直线的方程为,代入椭圆的方程解得,即,所以【点睛】本题考查了直线和椭圆综合,考查了直线和圆的位置关系判断,面积的最值问题,考查了学生综合分析,数学运算能力,属于较难题.21、(1)(2)详见解析【解析】由题意,根据平均数公式求得,再根据,参照数据求解.由题意得,获赠话费的可能取值为,求得相应的概率,列出分布列求期望.【详解】由题意得综上,由题意得,获赠话费的可能取值为,的分布列为:【点睛】本题主要考查正态分布和离散型随机变量的分布列及期望,还考查了运算求解的能力,属于中档题.22、(1)证明见解析;(2)证明见解析.【解析】证明:(1)在矩形中,又平面,平面,所以平面 (2)连结,交于点,连结,在矩形中,点为的中点,又,故, 又,平面,所以平面, 又平面,所以平面平面