南昌县莲塘第一中学2022-2023学年高考临考冲刺数学试卷含解析.doc

上传人:lil****205 文档编号:87996565 上传时间:2023-04-19 格式:DOC 页数:21 大小:2.48MB
返回 下载 相关 举报
南昌县莲塘第一中学2022-2023学年高考临考冲刺数学试卷含解析.doc_第1页
第1页 / 共21页
南昌县莲塘第一中学2022-2023学年高考临考冲刺数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《南昌县莲塘第一中学2022-2023学年高考临考冲刺数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《南昌县莲塘第一中学2022-2023学年高考临考冲刺数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,满足约束条件,则的最大值是( )ABCD2中,点在边上,平分,若,则( )ABCD3已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD4设直线的方程为,圆的方程为,若直线被

2、圆所截得的弦长为,则实数的取值为A或11B或11CD5已知双曲线C的两条渐近线的夹角为60,则双曲线C的方程不可能为( )ABCD6已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为ABCD7复数的共轭复数在复平面内所对应的点位于( )A第一象限B第二象限C第三象限D第四象限8过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,且,则抛物线的方程是( )ABCD9若,则( )ABCD10已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为 ABCD11已知集合则( )ABCD12在中,点D是线段BC上任意一点,则( )AB-2CD2二、

3、填空题:本题共4小题,每小题5分,共20分。13数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:的值域为;其中正确的结论是_(写出所有正确的结论的序号)14已知的终边过点,若,则_15已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为_16如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_,点到直线的距离的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)购买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补

4、贴.某调研机构对拟购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示.(1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望;(3)统计最近个月该品牌汽车的市场销售量,得其频数分布表如下:月份销售量(万辆)试预计该品牌汽车在年月份的销售量约为多少万辆?附:对于一组样本数据,其回归直线的斜率和截距的最小二乘估计分别为,.18(12分)为了检测某种零件的一条生产线的生产

5、过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100 cm,试判断该零件是否属于“不合格”的零件.19(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求的直角坐标方程和的直角坐标;(2)设与交于,两点,线段的中点为,求.20(12分)如图,四棱锥中,底面为直角梯形,为等边三角形,

6、平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.21(12分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.()证明:平面平面;()求二面角的余弦值.22(10分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛

7、】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.2、B【解析】由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,.故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.3、D【解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立. .令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.4

8、、A【解析】圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A5、C【解析】判断出已知条件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.【详解】两条渐近线的夹角转化为双曲渐近线与轴的夹角时要分为两种情况依题意,双曲渐近线与轴的夹角为30或60,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.故选:C【点睛】本小题主要考查双曲线的渐近线方程,属于基础题.6、D【解析】如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,.在和中,由余弦定理得,整理解得.故选

9、D7、D【解析】由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标得结论【详解】,对应点为,在第四象限故选:D.【点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义掌握复数的运算法则是解题关键8、B【解析】利用抛物线的定义可得,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.【详解】设抛物线的焦点为F,设点,由抛物线的定义可知,线段AB中点的横坐标为3,又,可得,所以抛物线方程为.故选:B.【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.9、B【解析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由

10、诱导公式得,所以 .故选B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.10、D【解析】由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可【详解】解:如图,点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小, 设正方体的棱长为,则,取,连接,则共面,在中,设到的距离为,设到平面的距离为,.故选D【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题11、B【解析】解对数不等式可得集合A,由交集运算即可求解.【详解】集

11、合解得由集合交集运算可得,故选:B.【点睛】本题考查了集合交集的简单运算,对数不等式解法,属于基础题.12、A【解析】设,用表示出,求出的值即可得出答案.【详解】设由,.故选:A【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据新定义,结合实数的性质即可判断,由定义求得比小的有理数个数,即可确定.【详解】对于,由定义可知,当为有理数时;当为无理数时,则值域为,所以错误;对于,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以正确;对于,因为,当为无理数

12、时,可以是有理数,也可以是无理数,所以错误;对于,由定义可知,所以错误;综上可知,正确的为.故答案为:.【点睛】本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.14、【解析】由题意利用任意角的三角函数的定义,求得的值【详解】的终边过点,若, 即答案为-2.【点睛】本题主要考查任意角的三角函数的定义和诱导公式,属基础题.15、【解析】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,.故答案为:.【点睛】本题考查

13、棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.16、 【解析】三棱锥的底面边长和侧棱长都为4,所以在平面的投影为的重心,利用解直角三角形,即可求出点到平面的距离;,可得点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径,即可求出结论.【详解】边长为,则中线长为,点到平面的距离为,点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径.又三棱锥的底面边长和侧棱长都为4,以下求过和的两个平行平面间距离,分别取中点,连,则,同理,分别过做,直

14、线确定平面,直线确定平面,则,同理,为所求,所以到直线最大距离为.故答案为:;.【点睛】本题考查空间中的距离、正四面体的结构特征,考查空间想象能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1.7;(2),见解析;(2)2.【解析】(1)平均数的估计值为每个小矩形组中值乘以小矩形面积的和;(2)易得,由二项分布列的期望公式计算;(3)利用所给公式计算出回归直线即可解决.【详解】(1)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值的平均数的估计值为,所以方差的估计值为;(2)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值高于3万元的

15、频率为,则,所以的分布列为,数学期望;(3)将 2018年11月至2019年3月的月份数依次编号为 1,2,3,4,5,记 ,由 散 点 图可知,5组样本数据呈线性相关关系,因为,则,所以回归直线方程为,当时,预计该品牌汽车在年月份的销售量约为2万辆.【点睛】本题考查平均数、方差的估计值、二项分布列及其期望、线性回归直线方程及其应用,是一个概率与统计的综合题,本题是一道中档题.18、(1)66.5 (2)属于【解析】(1)利用频率分布直方图的平均数公式求解;(2)求出,即可判断得解.【详解】(1) (2) 所以该零件属于“不合格”的零件【点睛】本题主要考查频率分布图中平均数的计算和应用,意在考

16、查学生对这些知识的理解掌握水平.19、(1),(2)【解析】(1)利用互化公式把曲线C化成直角坐标方程,把点P的极坐标化成直角坐标;(2)把直线l的参数方程的标准形式代入曲线C的直角坐标方程,根据韦达定理以及参数t的几何意义可得【详解】(1)由2得2+2sin22,将2x2+y2,ysin代入上式并整理得曲线C的直角坐标方程为y21,设点P的直角坐标为(x,y),因为P的极坐标为(,),所以xcoscos1,ysinsin1,所以点P的直角坐标为(1,1)(2)将代入y21,并整理得41t2+110t+250,因为11024412580000,故可设方程的两根为t1,t2,则t1,t2为A,B

17、对应的参数,且t1+t2,依题意,点M对应的参数为,所以|PM|【点睛】本题考查了简单曲线的极坐标方程,属中档题20、(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,平面平面(2)如图建立空间直角坐标系,则,由已知,得,设平面的法向量为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.

18、【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、()证明见解析;().【解析】() 先证明,再证明平面,利用面面垂直的判定定理,即可求证所求证;()根据题意以为轴、轴、轴建立空间直角坐标系,求出平面和平面的向量,利用公式即可求解.【详解】()证:由已知得又 平面,平面,而故,平面 平面,平面平面()由()知,推理知梯形中,有,又,故所以相似,故有,即所以,以为轴、轴、轴建立如图所示的空间直角坐标系,则 ,设平面的法向量为,则令,则,是平面的一个法向量设平面的一个法向量为 令,则 是平面的一个法向量= 又二面角为钝二面角,其

19、余弦值为.【点睛】本题考查线面、面面垂直的判定定理与性质定理,考查向量法求二面角的余弦值,考查直观想象能力与运算求解能力,属于中档题.22、()()见证明【解析】()求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;()由是减函数,且可得,当时,则,即,两边同除以得,即,从而 ,两边取对数 ,然后再证明恒成立即可,构造函数,通过求导证明即可【详解】解:()的定义域为,.由是减函数得,对任意的,都有恒成立.设.,由知,当时,;当时,在上单调递增,在上单调递减,在时取得最大值.又,对任意的,恒成立,即的最大值为.,解得.()由是减函数,且可得,当时,即.两边同除以得,即.从而 ,所以 .下面证;记,. ,在上单调递增,在上单调递减,而,当时,恒成立,在上单调递减,即时,当时,.,当时,即.综上可得,.【点睛】本题考查了导数与函数的单调性的关系,考查了函数的最值,考查了构造函数的能力,考查了逻辑推理能力与计算求解能力,属于难题,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁