《四川省自贡市重点中学2023届高三压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省自贡市重点中学2023届高三压轴卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是ABCD2已知集合,则( )ABCD3定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )ABCD以上情况均有可能4已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为ABC2D5执行如图所示的程序框图,若输入的,则输出的( )A9B31C15D636设复数
3、满足,则( )A1B-1CD7已知向量,若,则( )ABCD8抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )ABCD9过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为( )A BCD10在中,若,则实数( )ABCD11在中,则 ( )ABCD12已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值
4、分別为4,5,则输出的值为_. 14若奇函数满足,为R上的单调函数,对任意实数都有,当时,则_.15已知等差数列的前n项和为,则_16已知实数x,y满足,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知多面体中,、均垂直于平面,是的中点(1)求证:平面;(2)求直线与平面所成角的正弦值18(12分)如图,四棱锥中,底面为直角梯形,为等边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.19(12分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,
5、是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.20(12分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值21(12分)超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n()份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混
6、合检验,将其中k(且)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p().(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.(
7、i)试运用概率统计的知识,若,试求p关于k的函数关系式;(ii)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:,22(10分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如
8、图(3)恰好有6个点到平面的距离为.所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.2、D【解析】先求出集合B,再与集合A求交集即可.【详解】由已知,故,所以.故选:D.【点睛】本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.3、B【解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角
9、,所以且即,所以即,故选:【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键4、B【解析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.5、B【解析】根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【详解】执行程序框;,满足,退出循环,因此输出,
10、故选:B.【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.6、B【解析】利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.7、A【解析】利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.8、A【解析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值【详解】抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A【点睛】本题考查三角形的面积的求法
11、,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题9、C【解析】联立方程解得M(3,),根据MNl得|MN|MF|4,得到MNF是边长为4的等边三角形,计算距离得到答案.【详解】依题意得F(1,0),则直线FM的方程是y(x1)由得x或x3.由M在x轴的上方得M(3,),由MNl得|MN|MF|314又NMF等于直线FM的倾斜角,即NMF60,因此MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.10、D【解析】将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,所以
12、,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.11、A【解析】先根据得到为的重心,从而,故可得,利用可得,故可计算的值【详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A【点睛】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心12、C【解析】求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,解得,不妨设,则直线的方程为,由,解得,所以.故选:C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、105
13、5【解析】模拟执行程序框图中的程序,即可求得结果.【详解】模拟执行程序如下:,满足,满足,满足,满足,不满足,输出.故答案为:1055.【点睛】本题考查程序框图的模拟执行,属基础题.14、【解析】根据可得,函数是以为周期的函数,令,可求,从而可得,代入解析式即可求解.【详解】令,则,由,则,所以,解得,所以,由时,所以时,;由,所以,所以函数是以为周期的函数,又函数为奇函数,所以.故答案为:【点睛】本题主要考查了换元法求函数解析式、函数的奇偶性、周期性的应用,属于中档题.15、【解析】利用求出公差,结合等差数列的通项公式可求.【详解】设公差为,因为,所以,即.所以.故答案为:【点睛】本题主要考
14、查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.16、1【解析】直接用表示出,然后由不等式性质得出结论【详解】由题意,又,即,的最大值为1故答案为:1【点睛】本题考查不等式的性质,掌握不等式的性质是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)取的中点,连接、,推导出四边形为平行四边形,可得出,由此能证明平面;(2)由,得平面,则点到平面的距离等于点到平面的距离,在平面内过点作于点,就是到平面的距离,也就是点到平面的距离,由此能求出直线与平面所成角的正弦值【详解】(1)取的中点,
15、连接、,、分别为、的中点,则且,、均垂直于平面,且,则,且,所以,四边形为平行四边形,则,平面,平面,因此,平面;(2)由,平面,平面,平面,点到平面的距离等于点到平面的距离,在平面内过点作于点,平面,平面,平面,即就是到平面的距离,也就是点到平面的距离,设,则到平面的距离,因此,直线与平面所成角的正弦值为【点睛】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题18、(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面
16、.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,平面平面(2)如图建立空间直角坐标系,则,由已知,得,设平面的法向量为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1);(2)证明见解析,或【解析】(1)根据点到直线的公式结合二次函数的性质即可求出;(2)设,表示出直线,的方程,利用表示出,即
17、可求定点的坐标【详解】(1)设抛物线上点的坐标为,则,时取等号),则抛物线上的点到直线距离的最小值;(2)设,直线,的方程为分别为,由两条直线都经过点点得,为方程的两根,直线的方程为,共线又,解,点,是直线上的动点,时,时,或【点睛】本题考查抛物线的方程的求法,考查直线方程的求法,考查直线过定点的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力20、(1)(2)特征值为或【解析】(1)先设矩阵,根据,按照运算规律,即可求出矩阵.(2)令矩阵的特征多项式等于,即可求出矩阵的特征值【详解】解:(1)设矩阵由题意,因为,所以 ,即所以,(2)矩阵的特征多项式,令,解得或,所以矩阵的特征值为1
18、或【点睛】本题主要考查矩阵的乘法和矩阵的特征值,考查学生的划归与转化能力和运算求解能力.21、(1)(2)(i)(,且).(ii)最大值为4.【解析】(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A,利用古典概型、排列组合求解即可;(2)(i)由已知得,的所有可能取值为1,则可求得,即可得到,进而由可得到p关于k的函数关系式;(ii)由可得,推导出,设(),利用导函数判断的单调性,由单调性可求出的最大值【详解】(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A,则,恰好经过两次检验就能把阳性样本全部检验出来的概率为(2)(i)由已知得,的所有可能取值为1,若,则,则,p关于k的函数关系式为(,且)(ii)由题意知,得,设(),则,令,则,当时,即在上单调增减,又,又,k的最大值为4【点睛】本题考查古典概型的概率公式的应用,考查随机变量及其分布,考查利用导函数判断函数的单调性22、(1)(2)直线过定点【解析】设.(1)由题意知,.设直线的方程为,由得,则,由根与系数的关系可得,所以.由,得,解得.所以抛物线的方程为.(2)设直线的方程为,由得,由根与系数的关系可得, 所以,解得.所以直线的方程为,所以时,直线过定点.