《咸宁市重点中学2023年中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《咸宁市重点中学2023年中考四模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成
2、第二次旋转;在这样连续6次旋转的过程中,点B,O间的距离不可能是()A0B0.8C2.5D3.42如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A13;13B14;10C14;13D13;143某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500击中靶心次数(m)8194492178451击中靶心频率()0.800.950.880.920.890.90由此表推断这个射手射击1次,击中靶心的概率是( )A0.6B0.7C0.8D0.94在函数y中,自变量x的取值范围是( )Ax1Bx1且x0Cx0且x1Dx0且x
3、15如图,平行四边形ABCD的周长为12,A=60,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()ABCD6如图,ADE绕正方形ABCD的顶点A顺时针旋转90,得ABF,连接EF交AB于H,有如下五个结论AEAF;EF:AF=:1;AF2=FHFE;AFE=DAE+CFE FB:FC=HB:EC则正确的结论有( )A2个B3个C4个D5个7下列计算正确的是( )ABCD8如图,AOB45,OC是AOB的角平分线,PMOB,垂足为点M,PNOB,PN与OA相交于点N,那么的值等于()ABCD9某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名
4、参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( )A众数B中位数C平均数D方差10甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A甲超市的利润逐月减少B乙超市的利润在1月至4月间逐月增加C8月份两家超市利润相同D乙超市在9月份的利润必超过甲超市二、填空题(本大题共6个小题,每小题3分,共18分)11矩形ABCD中,AB=8,AD=6,E为BC边上一点,将ABE沿着AE翻折,点B落在点F处,当EFC为直角三角形时BE=_12如图,A,B两点被池塘隔开,不能直接测量
5、其距离于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AMAC,BNBC,测得MN200m,则A,B间的距离为_m13某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元则A型号的计算器的每只进价为_元14今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为_人.15如图,点A在双曲线y的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC2AB,点E在线段AC上,且AE3EC,点D为OB的中点,若ADE的面积为3,则k
6、的值为_16定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则_三、解答题(共8题,共72分)17(8分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表 等级得分x(分)频数(人)A95x1004B90x
7、95mC85x90nD80x8524E75x808F70x754请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是 其中m ,n (2)扇形统计图中,求E等级对应扇形的圆心角的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率18(8分)如图,已知:,求证:19(8分)如图,已知AOB=45,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作图痕迹)
8、;(1)若M为AO的中点,求AM的长20(8分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_人,扇形统计图中D类所对应扇形的圆心角为_度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画班主任现从A类4名学生中随机抽取两名学生参加比赛,
9、请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率21(8分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE,求证:CECF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE45,请你利用(1)的结论证明:GEBEGD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC,E是AB上一点,且DCE45,BE4,DE=10, 求直角梯形ABCD的面积22(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,
10、若从中随机摸出一个球,这个球是白球的概率为求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)23(12分)九章算术中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题24先化简,再求值:(x3)(1),其中x=1参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】如图,点O的运动轨迹是图在黄线,点
11、B,O间的距离d的最小值为0,最大值为线段BK=,可得0d,即0d3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CHBD于点H,六边形ABCDE是正六边形,BCD=120,CBH=30,BH=cos30 BC=,BD=.DK=,BK=,点B,O间的距离d的最小值为0,最大值为线段BK=,0d,即0d3.1,故点B,O间的距离不可能是3.4,故选:D【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键2、C【解析】根据统计图,利用众数与中位数的概念即可得出答案【详解】从统计图中可以得出这一周的气
12、温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键3、D【解析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.4、C【解析】根据分式和二次根式有意义的条件进行计算即可【详解】由题意得:x2且x22解得:x
13、2且x2故x的取值范围是x2且x2故选C【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键5、C【解析】过点B作BEAD于E,构建直角ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【详解】如图,过点B作BEAD于E.A60,设AB边的长为x,BEABsin60x.平行四边形ABCD的周长为12,AB(122x)6x,yADBE(6x)x(0x6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关
14、键.6、C【解析】由旋转性质得到AFBAED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【详解】解:由题意知,AFBAEDAF=AE,FAB=EAD,FAB+BAE=EAD+BAE=BAD=90.AEAF,故此选项正确;AFE=AEF=DAE+CFE,故正确;AEF是等腰直角三角形,有EF:AF=:1,故此选项正确;AEF与AHF不相似,AF2=FHFE不正确.故此选项错误,HB/EC,FBHFCE,FB:FC=HB:EC,故此选项正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质
15、是解决问题的关键.7、A【解析】原式各项计算得到结果,即可做出判断【详解】A、原式=,正确;B、原式不能合并,错误;C、原式=,错误;D、原式=2,错误故选A【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键8、B【解析】过点P作PEOA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得POM=OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出PNE=AOB,再根据直角三角形解答【详解】如图,过点P作PEOA于点E,OP是AOB的平分线,PEPM,PNOB,POMOPN,PNEPON+OPNPON+POMAOB45,故选:B【点睛
16、】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键9、B【解析】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可【详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少故选B【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键10、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得【详解】A、甲超市的利润逐月减少,此选项正确,不符
17、合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上升或下降来表示统计数量增减变化二、填空题(本大题共6个小题,每小题3分,共18分)11、3或1【解析】分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.【详解】当CEF为直角三角形时,有两种情况:当点F落在矩形内部时,如图1所示连结AC,在RtABC中,AB=
18、1,BC=8,AC= =10,B沿AE折叠,使点B落在点F处,AFE=B=90,当CEF为直角三角形时,只能得到EFC=90,点A、F、C共线,即B沿AE折叠,使点B落在对角线AC上的点F处,如图,EB=EF,AB=AF=1,CF=101=4,设BE=x,则EF=x,CE=8x,在RtCEF中,EF2+CF2=CE2,x2+42=(8x)2,解得x=3,BE=3;当点F落在AD边上时,如图2所示此时ABEF为正方形,BE=AB=1综上所述,BE的长为3或1故答案为3或1【点睛】本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论12、1【解析】AM=AC,BN=
19、BC,AB是ABC的中位线,AB=MN=1m,故答案为113、40【解析】设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论【详解】设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据题意得:,解得:答:A型号的计算器的每只进价为40元【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键14、3.53104【解析】科学记数法的表示形式为a10n的形式
20、,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数,35300=3.53104,故答案为:3.53104.15、.【解析】由AE3EC,ADE的面积为3,可知ADC的面积为4,再根据点D为OB的中点,得到ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,),从而表示出梯形BOCA的面积关于k的等式,求解即可.【详解】如图,连接DC,AE=3EC,ADE的面积为3,CDE的面积为1.ADC的面积为4.点A在双曲线y的第一象限的那一支上,设A点坐标为 (x,).OC2AB,OC=2x.点D为OB的中点,ADC的面积为梯形BOCA面积的一半,梯形BOCA的面积为8.
21、梯形BOCA的面积=,解得.【点睛】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.16、1【解析】根据两点间的距离公式可求m的值.【详解】依题意有,解得,故答案为:1【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键三、解答题(共8题,共72分)17、(1)80,12,28;(2)36;(3)140人;(4)【解析】(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;(2)用E组所占的百分比乘以360得到的值;(3)利用样本估计整
22、体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解【详解】(1)2430%=80,所以样本容量为80;m=8015%=12,n=801242484=28;故答案为80,12,28;(2)E等级对应扇形的圆心角的度数=360=36;(3)700=140,所以估计体育测试成绩在A、B两个等级的人数共有140人;(4)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能
23、的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图18、证明见解析;【解析】根据HL定理证明RtABCRtDEF,根据全等三角形的性质证明即可【详解】,BE为公共线段,CE+BE=BF+BE,即 又,在与中, AC=DF.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键19、(1)详见解析;(1).【解析】(1)以点M为顶点,作AMN=O即可; (1)由AOB=45,ABOB,可知AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知AOB为等腰R
24、tAOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明AOB为等腰为等腰直角三角形是解(1)的关键.20、48;105;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案试题解析:(1)1225%=48(人) 1448360=105 48(4+12+14)=18(人),
25、补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1A1A2A2A1A1A2A2由上表可得:考点:统计图、概率的计算21、(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明CBECDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知BCE=DCF,即可证明ECF=BCD=90,根据GCE=45,得GCF=GCE=45,利用全等三角形的判定方法得出ECGFCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形,设DF=x,则AD=12-
26、x,根据(2)可得:DE=BE+DF=4+x,在直角ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,BC=CD,B=CDF,BE=DF,CBECDF,CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知CBECDF,BCE=DCFBCE+ECD=DCF+ECD即ECF=BCD=90,又GCE=45,GCF=GCE=45,CE=CF,GCE=GCF,GC=GC,ECGFCG,GE=GF,GE=DF+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得
27、:DE=BE+DF=4+x,在直角ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1则DE=4+1=2【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线22、(1)袋子中白球有2个;(2)见解析, .【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案【详解】解:(1)设袋子中白球有x个,根据题意得:,解得:x2,经检验,x2是原分式方程的解,
28、袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:【点睛】此题考查了列表法或树状图法求概率注意掌握方程思想的应用注意概率=所求情况数与总情况数之比23、共有7人,这个物品的价格是53元【解析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x人,这个物品的价格是y元,解得答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.24、x+1,2 【解析】先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.【详解】原式=(x2)()=(x2)=(x2)=x+1,当x=1时,原式=1+1=2【点睛】本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.