吉林省四平市重点中学2022-2023学年中考数学全真模拟试题含解析.doc

上传人:lil****205 文档编号:87995842 上传时间:2023-04-19 格式:DOC 页数:18 大小:716KB
返回 下载 相关 举报
吉林省四平市重点中学2022-2023学年中考数学全真模拟试题含解析.doc_第1页
第1页 / 共18页
吉林省四平市重点中学2022-2023学年中考数学全真模拟试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《吉林省四平市重点中学2022-2023学年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《吉林省四平市重点中学2022-2023学年中考数学全真模拟试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A1种B2种C3种D4种2函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx33如果代数式有意义,则实数x的取值范围是( )

2、Ax3Bx0Cx3且x0Dx34如图,四边形ABCD内接于O,ADBC,BD平分ABC,A130,则BDC的度数为()A100B105C110D1155如图,在ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A5048B2548C5024D6下列计算结果是x5的为()Ax10x2 Bx6x Cx2x3 D(x3)27下列4个数:,()0,其中无理数是()ABCD()08如图,ABCD,DEBE,BF、DF分别为ABE、CDE的角平分线,则BFD()A110B120C125D1359如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()AB

3、CD10如下图所示,该几何体的俯视图是 ( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边PAB,使AB落在x轴上,则POB的面积为_12如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若ACB=90,则点C的坐标为_13计算:(2a3)2=_14如图,AB是O的直径,点C是O上的一点,若BC=6,AB=10,ODBC于点D,则OD的长为_15如图,在平面直角坐标系中,已知点A(4,0)、B(0,3),对AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、,则第

4、(5)个三角形的直角顶点的坐标是_,第(2018)个三角形的直角顶点的坐标是_16在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y(x0)与此正方形的边有交点,则a的取值范围是_三、解答题(共8题,共72分)17(8分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上

5、一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值18(8分)阅读下列材料:题目:如图,在ABC中,已知A(A45),C=90,AB=1,请用sinA、cosA表示sin2A19(8分)如图,菱形ABCD中,已知BAD=120,EGF=60, EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);如图丙,在顶点G运动的过程中,若,探

6、究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当2时,求EC的长度20(8分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修供电局距离抢修工地15千米抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度21(8分)如图,已知O经过ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD8,AC9,sinC,求O的半径22(10分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手

7、组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定23(12分)已知ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出ABC绕点C按顺时针方向旋转90后的ABC;求点A旋转到点A所经过的路线长(结果保留).24如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角

8、为50,观测旗杆底部B的仰角为45,求旗杆AB的高度(参考数据:sin500.77,cos500.64,tan501.19)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-x,x、y都是正整数,x=5时,y=4;x=10时,y=1;购买方案有2种故选B【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.2、D【解析】由题意得,x10,解得x1故选D3、C【解析】根据二次根式有意义和分式有意义的条件列出不等

9、式,解不等式即可【详解】由题意得,x+30,x0,解得x3且x0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.4、B【解析】根据圆内接四边形的性质得出C的度数,进而利用平行线的性质得出ABC的度数,利用角平分线的定义和三角形内角和解答即可【详解】四边形ABCD内接于O,A=130,C=180-130=50,ADBC,ABC=180-A=50,BD平分ABC,DBC=25,BDC=180-25-50=105,故选:B【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出C的度数5、B【解析】设以AB、AC为直径作半圆交BC于D点,连

10、AD,如图,ADBC,BD=DC=BC=8,而AB=AC=10,CB=16,AD=6,阴影部分面积=半圆AC的面积+半圆AB的面积ABC的面积,=52166,=251故选B6、C【解析】解:Ax10x2=x8,不符合题意;Bx6x不能进一步计算,不符合题意;Cx2x3=x5,符合题意;D(x3)2=x6,不符合题意故选C7、C【解析】=3,是无限循环小数,是无限不循环小数,所以是无理数,故选C8、D【解析】如图所示,过E作EGABABCD,EGCD,ABE+BEG=180,CDE+DEG=180,ABE+BED+CDE=360又DEBE,BF,DF分别为ABE,CDE的角平分线,FBE+FDE

11、=(ABE+CDE)=(36090)=135,BFD=360FBEFDEBED=36013590=135故选D【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补解决问题的关键是作平行线9、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可详解:从左边看竖直叠放2个正方形故选:C点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项10、B【解析】根据俯视图是从上面看到的图形解答即可.【详解】从上面看是三个长方形,故B是该几何体的俯视

12、图.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】如图,过点P作PHOB于点H,点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,9=m2,且m0,解得,m=3.PH=OH=3.PAB是等边三角形,PAH=60.根据锐角三角函数,得AH=.OB=3+SPOB=OBPH=.12、(2,0)【解析】根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再

13、根据RtABC中,OC=AB=2,即可得到点C的坐标【详解】如图所示,直线y=x与双曲线y=交于A,B两点,OA=2,AB=2AO=4,又ACB=90,RtABC中,OC=AB=2,又点C在x轴的正半轴上,C(2,0),故答案为(2,0)【点睛】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长13、4a1【解析】根据积的乘方运算法则进行运算即可.【详解】原式 故答案为【点睛】考查积的乘方,掌握运算法则是解题的关键.14、1【解析】根据垂径定理求得BD,然后根据勾股定理求得即可【详解】解:ODBC,BD=CD=BC=3,OB=AB=5,在Rt

14、OBD中,OD=1故答案为1【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键15、(16,) (8068,) 【解析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】点A(4,0),B(0,3),OA=4,OB=3,AB=5,第(2)个三角形的直角顶点的坐标是(4,);53=1余2,第(5)个三角形的直角顶点的坐标是(16,),20183=672余2,第(2018)个三角形

15、是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,第(2018)个三角形的直角顶点的坐标是(8068,)故答案为:(16,);(8068,)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.16、 【解析】因为A点的坐标为(a,a),则C(a1,a1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.【详解】解:A点的坐标为(a,a),C(a1,a1),当C在双曲线y=时,则a1=,解得a=+1;当A在双曲线y=时,则a=,解得a=,a的取值范围是a+1故答案为a+1【点睛】本题主要考查反比例函数与几

16、何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.三、解答题(共8题,共72分)17、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2

17、,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把

18、D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x

19、=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.18、sin2A=2cosAsinA【解析】先作出直角三角形的斜边的中线,进而求出,CED=2A,最后用三角函数的定义即可得出结论【详解】解:如图,作RtABC的斜边AB上的中线CE,则 CED=2A,过点C作CDAB于D,在RtA

20、CD中,CD=ACsinA,在RtABC中,AC=ABcosA=cosA在RtCED中,sin2A=sinCED= 2ACsinA=2cosAsinA【点睛】此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和CED=2A是解本题的关键19、(1)证明见解析(2)线段EC,CF与BC的数量关系为:CECFBC.CECFBC(3)【解析】(1)利用包含60角的菱形,证明BAECAF,可求证;(2)由特殊到一般,证明CAECGE,从而可以得到EC、CF与BC的数量关系(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.

21、【详解】解:(1)证明:四边形ABCD是菱形,BAD120,BAC60,BACF60,AB=BC,AB=AC,BAEEACEACCAF60,BAE=CAF,在BAE和CAF中,,BAECAF,BECF,ECCFECBEBC,即ECCFBC; (2)知识探究:线段EC,CF与BC的数量关系为:CECFBC.理由:如图乙,过点A作AEEG,AFGF,分别交BC、CD于E、F类比(1)可得:EC+CF=BC,AEEG,CAECGE,同理可得:,即;CECFBC. 理由如下:过点A作AEEG,AFGF,分别交BC、CD于E、F.类比(1)可得:ECCFBC,AEEG,CAECAE,CECE,同理可得:

22、CFCF,CECFCECF(CECF)BC,即CECFBC; (3)连接BD与AC交于点H,如图所示:在RtABH中,AB8,BAC60,BHABsin608,AHCH=ABcos6084,GH1,CG413,t(t2),由(2)得:CECFBC,CEBC CF8.【点睛】本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形20、吉普车的速度为30千米/时.【解析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案【

23、详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意. 答:吉普车的速度为30千米/时. 点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用为中考常见题型,要求学生牢固掌握注意检验21、O的半径为【解析】如图,连接OA交BC于H首先证明OABC,在RtACH中,求出AH,设O的半径为r,在RtBOH中,根据BH2+OH2OB2,构建方程即可解决问题。【详解】解:如图,连接OA交BC于H点A为的中点,OABD,BHDH4,AHCBHO90,AC9,AH3,设O的半径为r,在R

24、tBOH中,BH2+OH2OB2,42+(r3)2r2,r,O的半径为【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题22、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分,众数b=85,高中5名选手的成绩

25、是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)=70,初中代表队选手成绩比较稳定【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.23、(1)、(2)见解析(3)【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长试题解析:(1)A(0,4)C(3,1)(2)如图所示:(3)根据勾股定理可得:AC=3,则考点:图形的旋转、扇形的弧长计算公式24、7.6 m【解析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长【详解】解:由题意,BDC45,ADC50,ACD90,CD40 m在RtBDC中,tanBDCBCCD40 m在RtADC中,tanADCAB7.6(m)答:旗杆AB的高度约为7.6 m【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁