《广东省佛山市名校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省佛山市名校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1下列函数中,y随着x的增大而减小的是( )Ay=3xBy=3xCD2某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500击中靶心次数(m)8194492178451击中靶心频率()0.800.950.880.920.890.90由此表推断这个射手射击1次,击中靶心
2、的概率是( )A0.6B0.7C0.8D0.93不等式的解集在数轴上表示正确的是( )ABCD4如图,直线ykx+b与x轴交于点(4,0),则y0时,x的取值范围是()Ax4Bx0Cx4Dx05如图,ABC是O的内接三角形,BOC120,则A等于()A50B60C55D656一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )ABCD7如图:A、B、C、D四点在一条直线上,若ABCD,下列各式表示线段AC错误的是( )AACADCDBACAB+BCCACBDABDACADAB8十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿
3、元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A81012B81013C81014D0.810139某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A22x=16(27x)B16x=22(27x)C216x=22(27x)D222x=16(27x)10计算(xl)(x2)的结果为( )Ax22Bx23x2Cx23x3Dx22x2二、填空题(本大题共6个小题,每小题3分,共18分)11图甲是小明设计的带菱形图案的花边作品,该作品
4、由形如图乙的矩形图案拼接而成(不重叠,无缝隙)图乙种,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为_cm12下面是“作已知圆的内接正方形”的尺规作图过程已知:O求作:O的内接正方形作法:如图,(1)作O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与O交于C、D两点,顺次连接A、C、B、D即四边形ACBD为所求作的圆内接正方形请回答:该尺规作图的依据是_13从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形
5、,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在ABC中,DB1,BC2,CD是ABC的完美分割线,且ACD是以CD为底边的等腰三角形,则CD的长为_14若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_三角形15如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于
6、图1中的( )A点M B点N C点P D点Q16如图,把一个直角三角尺ACB绕着30角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则BDC的度数为_度三、解答题(共8题,共72分)17(8分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两
7、种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入投入总成本)18(8分)已知抛物线y=x26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值19(8分)已知OAB在平面直角坐标系中的位置如图所示请解答以下问题:按要求作图:
8、先将ABO绕原点O逆时针旋转90得OA1B1,再以原点O为位似中心,将OA1B1在原点异侧按位似比2:1进行放大得到OA2B2;直接写出点A1的坐标,点A2的坐标20(8分)一艘观光游船从港口A以北偏东60的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间(温馨提示:sin530.8,cos530.6)21(8分)如图,一次函数y=x+的图象与反比例函数y=(k0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,AOM面积
9、为1(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标22(10分)如图,在ABC中,ACB=90,O是AB上一点,以OA为半径的O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F(1)求证:AE=AF;(2)若DE=3,sinBDE=,求AC的长23(12分)如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,求O的直径24在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)
10、的正面分别写上如图所示的正整数后,背面向上,洗匀放好(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示)请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=3x,y随着x的增大而减小,正确;C、,每个象限内,y随着x的增大而减小,故此选
11、项错误;D、,每个象限内,y随着x的增大而增大,故此选项错误;故选B考点:反比例函数的性质;正比例函数的性质2、D【解析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.3、B【解析】根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可【详解】解:解:移项得,x3-2,合并得,x1;在数轴上表示应包括1和它左边的部分,如下:;故选:B【点睛】本题考查了一
12、元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示4、A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围由图可知,当y1时,x-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y1,在x轴上方的部分y15、B【解析】由圆周角定理即可解答.【详解】ABC是O的内接三角形,A BOC,而BOC120,A60.故选B【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.6、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.7、C
13、【解析】根据线段上的等量关系逐一判断即可.【详解】A、AD-CD=AC,此选项表示正确;B、AB+BC=AC,此选项表示正确;C、AB=CD,BD-AB=BD-CD,此选项表示不正确;D、AB=CD,AD-AB=AD-CD=AC,此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.8、B【解析】80万亿用科学记数法表示为81故选B点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数
14、的绝对值1时,n是负数.9、D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程222x=16(27-x),故选D.10、B【解析】根据多项式的乘法法则计算即可.【详解】(xl)(x2)= x22xx2= x23x2.故选B.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长
15、为,则菱形的周长为:4=.考点:菱形的性质.12、相等的圆心角所对的弦相等,直径所对的圆周角是直角【解析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.13、【解析】设AB=x,利用BCDBAC,得=,列出方程即可解决问题【详解】BCDBAC,=,设AB=x,22=x,x0,x=4,AC=AD=4-1=3,BCDBAC,=,CD=故答案为【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解
16、题的关键是利用BCDBAC解答14、直角三角形【解析】根据题意,画出图形,用垂直平分线的性质解答【详解】点O落在AB边上,连接CO,OD是AC的垂直平分线,OC=OA,同理OC=OB,OA=OB=OC,A、B、C都落在以O为圆心,以AB为直径的圆周上,C是直角这个三角形是直角三角形【点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.15、D【解析】D试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P,由于甲虫
17、从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D考点:1.动点问题的函数图象分析;2.排他法的应用.16、1【解析】根据EBD由ABC旋转而成,得到ABCEBD,则BCBD,EBDABC30,则有BDCBCD,DBC1803010,化简计算即可得出.【详解】解:EBD由ABC旋转而成,ABCEBD,BCBD,EBDABC30,BDCBCD,DBC1803010,;故答案为:1【点睛】此题考查旋转的性质,即图形旋转后与原图形全等三、解答题(共8题,共7
18、2分)17、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元【解析】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据销售收入为300万元可列方程18x+12(20x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价成本列出W与y的一次函数,根据y的范围确定出W的最大值即可【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(
19、20x)万只,根据题意得:18x+12(20x)=300,解得:x=10,则20x=2010=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据题意得:13y+8.8(20y)239,解得:y15,根据题意得:利润W=(18121)y+(1280.8)(20y)=1.8y+64,当y=15时,W最大,最大值为91万元所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.18、(1)C(2,0),A(1,4),B(1,9);(2)t
20、5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3
21、,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,n)在抛物线y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立, 解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A(1,4),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线A
22、B与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),OD=OF=2 FOD=90,OFD=ODF=45 OC=OF=2,FOC=90,CF=2,OFC=OCF=45, DFC=DFO+OFC=45+45=90,CFAB PAB的面积是ABC面积的2倍,ABPM=ABCF, PM=2CF=1 PNx轴,FDO=45,DGN=45,PGM=45在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=
23、m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题意,舍去,m=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识19、 (1)见解析;(2)点A1的坐标为:(1,3),点A2的坐标为:(2,6)【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案【详解】(1)如图所示:OA1B1,OA2B2,即为所求;(2)点A1的坐标为:(1,3),点A2的坐标为:(2,6)【点睛】此题主要考查了位似变换以
24、及旋转变换,正确得出对应点位置是解题关键20、小时【解析】过点C作CDAB交AB延长线于D先解RtACD得出CD=AC=40海里,再解RtCBD中,得出BC=50,然后根据时间=路程速度即可求出海警船到大事故船C处所需的时间【详解】解:如图,过点C作CDAB交AB延长线于D在RtACD中,ADC=90,CAD=30,AC=80海里,CD=AC=40海里在RtCBD中,CDB=90,CBD=9037=53,BC=50(海里),海警船到大事故船C处所需的时间大约为:5040=(小时)考点:解直角三角形的应用-方向角问题21、(1) (2)(0,)【解析】(1)根据反比例函数比例系数k的几何意义得出
25、|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A,连接AB,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值AB的长;利用待定系数法求出直线AB的解析式,得到它与y轴的交点,即点P的坐标【详解】(1)反比例函数 y= =(k0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M, |k|=1,k0,k=2,故反比例函数的解析式为:y=;(2)作点 A 关于 y 轴的对称点 A,连接 AB,交 y 轴于点 P,则 PA+PB 最小由,解得,或,A(1,2),B(4,),A(1,2),最小值 AB= =,设直线 AB 的解析式为 y=mx+n
26、,则 ,解得,直线 AB 的解析式为 y= ,x=0 时,y= ,P 点坐标为(0,)【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键22、(1)证明见解析;(2)1【解析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可【详解】(1)连接OD,OD=OE,ODE=OED直线BC为O的切线,ODBCODB=90ACB=90,ODACODE=FOED=FAE=AF;(2)连接AD,AE是O的直径,ADE=90,AE=AF,
27、DF=DE=3,ACB=90,DAF+F=90,CDF+F=90,DAF=CDF=BDE,在RtADF中,=sinDAF=sinBDE=,AF=3DF=9,在RtCDF中,=sinCDF=sinBDE=,CF=DF=1,AC=AFCF=1【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.23、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2)连接OA,求出OAP=BAP+OAB=BOC+OBC=90,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角
28、形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90,POAB,DAB=MCB=90,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2M,BAP=2M,BON=BAP,POAB,ACO=90,AON+OAC=90,OA=OB,BON=AON,BAP=AON,BAP+OAC=90,OAP=90,OA是半径,PA是O的切线;(3)连接BN,则MBN=90tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90
29、,NBC=M=90BNC,MBCBNC,BC2=NCMC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.214=1,O的半径为1【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度24、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】试题分析:(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.试题解析:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,P2=,P1=,P2=,P1P2淇淇与嘉嘉抽到勾股数的可能性不一样