山东省菏泽市部分市县2023届中考联考数学试卷含解析.doc

上传人:lil****205 文档编号:87995259 上传时间:2023-04-19 格式:DOC 页数:22 大小:783KB
返回 下载 相关 举报
山东省菏泽市部分市县2023届中考联考数学试卷含解析.doc_第1页
第1页 / 共22页
山东省菏泽市部分市县2023届中考联考数学试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《山东省菏泽市部分市县2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省菏泽市部分市县2023届中考联考数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1二次函数ya(xm)2n的图象如图,则一次函数ymx+n的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限2如图,ABCD对角线

2、AC与BD交于点O,且AD3,AB5,在AB延长线上取一点E,使BEAB,连接OE交BC于F,则BF的长为()ABCD13如图1,等边ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形设点I为对称轴的交点,如图2,将这个图形的顶点A与等边DEF的顶点D重合,且ABDE,DE=2,将它沿等边DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A18B27CD454把一副三角板如图(1)放置,其中ACBDEC90,A41,D30,斜边AB4,CD1把三角板DC

3、E绕着点C顺时针旋转11得到D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )ABCD45如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1若设道路的宽为xm,则下面所列方程正确的是()A(311x)(10x)=570B31x+110x=3110570C(31x)(10x)=3110570D31x+110x1x1=5706如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D97已知,C是线段AB的黄金分割点,ACBC,若AB=2,则BC=()A3B(+1

4、)C1D(1)8滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A10分钟B13分钟C15分钟D19分钟9在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标

5、为( )AB或CD或10在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11若正n边形的内角为,则边数n为_.12如图,在ABC中,CA=CB,ACB=90,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90的EDF,与半圆交于点E,F,则图中阴影部分的面积是_13如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是_cm.14在平面直角坐标系中,点 A的坐标是(

6、-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_15我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_m16双察下列等式:,则第n个等式为_(用含n的式子表示)17已知整数k5,若ABC的边长均满足关于x的方程,则ABC的周长是 三、解答题(共7小题,满分69分)18(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图请结合以上信息解答下列问题:m= ;请补

7、全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动19(5分)计算:(2)2sin45+(1)2018220(8分)如图,已知在梯形ABCD中,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.21(10分)如图,在梯形ABCD中,ADBC,对角线 AC、BD交于点 M,点E在边BC上,且DAE=DCB,联结AE

8、,AE与BD交于点F(1)求证:;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.22(10分)如图,在ABC中,C=90,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F(1)若B=30,求证:以A、O、D、E为顶点的四边形是菱形(2)若AC=6,AB=10,连结AD,求O的半径和AD的长23(12分)已知平行四边形ABCD中,CE平分BCD且交AD于点E,AFCE,且交BC于点F 求证:ABFCDE; 如图,若1=65,求B的大小24(14分)已知AB是O的直径,PB是O的切线,C是O上的点,ACOP,M是直径AB上的动点,A与直线

9、CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f(1)求证:PC是O的切线;(2)设OP=AC,求CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】由抛物线的顶点坐标在第四象限可得出m0,n0,再利用一次函数图象与系数的关系,即可得出一次函数ymx+n的图象经过第一、二、三象限【详解】解:观察函数图象,可知:m0,n0,一次函数ymx+n的图象经过第一、二、三象限故选A【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k0,b0ykx+b的图象在一、二、三象限

10、”是解题的关键2、A【解析】首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:EFBEOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值【详解】取AB的中点M,连接OM,四边形ABCD是平行四边形,ADBC,OB=OD,OMADBC,OM=AD=3=,EFBEOM,AB=5,BE=AB,BE=2,BM=,EM=+2=,BF=,故选A【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识解此题的关键是准确作出辅助线,合理应用数形结合思想解题3、B【解析】先判断出莱洛三角形等边DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和

11、即可.【详解】如图1中,等边DEF的边长为2,等边ABC的边长为3,S矩形AGHF=23=6,由题意知,ABDE,AGAF,BAG=120,S扇形BAG=3,图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6+3)=27;故选B【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边DEF扫过的图形4、A【解析】试题分析:由题意易知:CAB=41,ACD=30若旋转角度为11,则ACO=30+11=41AOC=180-ACO-CAO=90在等腰RtABC中,AB=4,则AO=OC=2在RtAOD1中,OD1=CD1-O

12、C=3,由勾股定理得:AD1=故选A.考点: 1.旋转;2.勾股定理.5、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(311x)(10x)=570,故选A.6、B【解析】连接DF,根据垂径定理得到 , 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直径CD过弦EF的中点G,DCF=EOD=30,CD是O的直径,CFD=90,CF=CDcosDCF=12 = ,故选B【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键7、C【解析】

13、根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解:由于C为线段AB=2的黄金分割点,且ACBC,BC为较长线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍8、D【解析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.86+0.3x=1.88.5+0.3y+0.8(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5

14、.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.9、B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m2,n2)或(m(-2),n(-2),即(2m,2n)或(-2m,-2n),故选B点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k10、D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可【详解】由题意知,函数关

15、系为一次函数y=-1x+4,由k=-10可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1故选D【点睛】本题考查学生对计算程序及函数性质的理解根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解二、填空题(共7小题,每小题3分,满分21分)11、9【解析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).12

16、、1【解析】连接CD,作DMBC,DNAC,证明DMGDNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得【详解】连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:=CA=CB,ACB=90,点D为AB的中点,CD平分BCA又DMBC,DNAC,DM=DNGDH=MDN=90,GDM=HDN在DMG和DNH中,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=1则阴影部分的面积是:1故答案为1【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题

17、,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键13、5【解析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解【详解】解:如图,设圆心为O,弦为AB,切点为C如图所示则AB=8cm,CD=2cm连接OC,交AB于D点连接OA尺的对边平行,光盘与外边缘相切,OCABAD=4cm设半径为Rcm,则R2=42+(R-2)2,解得R=5,该光盘的半径是5cm故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键14、(-1, -6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案【详解

18、】点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1,-2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数15、1101【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:10nm用科

19、学记数法可表示为110-1m,故答案为110-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定16、【解析】探究规律后,写出第n个等式即可求解【详解】解:则第n个等式为 故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.17、6或12或1【解析】根据题意得k0且(3)2480,解得k.整数k5,k=4.方程变形为x26x+8=0,解得x1=2,x2=4.ABC的边长均满足关于x的方程x26x+8=0,ABC的边长为2、2、2或4、4、4或4、4、2.ABC的周长为6或12或1.考点:一元

20、二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【详解】请在此输入详解!三、解答题(共7小题,满分69分)18、(1)150,(2)36,(3)1【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=15020%=30人,补全上面的条形统计图即可;(3)360乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可【详解】(1)m=2114%=150,(2)“足球“的人数=15020%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360=36;(4)120020%=1人,答:估计该校约有1名学生最喜爱足球活

21、动故答案为150,36,1【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键19、 【解析】按照实数的运算顺序进行运算即可.【详解】解:原式 【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.20、(1)见解析;(2);(3)当或8时,与相似.【解析】(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,.(2)解:作

22、于M,于N.则四边形是矩形.在中,.(3)解:,相似时,与相似,当时,此时,当时,此时,综上所述,当PB=5或8时,与相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.21、(1) 证明见解析;(2) 证明见解析.【解析】分析:(1)由ADBC可得出DAE=AEB,结合DCB=DAE可得出DCB=AEB,进而可得出AEDC、AMFCMD,根据相似三角形的性质可得出=,根据ADBC,可得出AMDCMB,根据相似三角

23、形的性质可得出=,进而可得出=,即MD2=MFMB; (2)设FM=a,则BF=3a,BM=4a由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由ADBC,可得出AFDEFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形详解:(1)ADBC,DAE=AEBDCB=DAE,DCB=AEB,AEDC,AMFCMD,= ADBC,AMDCMB,=,即MD2=MFMB (2)设FM=a,则BF=3a,BM=4a 由MD2=MFMB,得:MD2=a4a,MD=2a,DF=BF=3a ADBC,AFDEFB,=1,

24、AF=EF,四边形ABED是平行四边形 点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”22、(1)证明见解析;(2);3【解析】试题分析:(1)连接OD、OE、ED先证明AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF先由OBDABC,求出O的半径,然后证明ADCAFD,得出AD2=ACAF,进而求出AD试题解析:(1)证明:如图1,连接OD、OE、EDBC与O相切于一点D,O

25、DBC,ODB=90=C,ODAC,B=30,A=60,OA=OE,AOE是等边三角形,AE=AO=0D,四边形AODE是平行四边形,OA=OD,四边形AODE是菱形(2)解:设O的半径为rODAC,OBDABC,即8r=6(8r)解得r=,O的半径为如图2,连接OD、DFODAC,DAC=ADO,OA=OD,ADO=DAO,DAC=DAO,AF是O的直径,ADF=90=C,ADCAFD,AD2=ACAF,AC=6,AF=,AD2=6=45,AD=3点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等熟练掌握相关图形

26、的性质及判定是解本题的关键考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质23、(1)证明见解析;(2)50【解析】试题分析:(1)由平行四边形的性质得出AB=CD,ADBC,B=D,得出1=DCE,证出AFB=1,由AAS证明ABFCDE即可;(2)由(1)得1=DCE=65,由平行四边形的性质和三角形内角和定理即可得出结果试题解析:(1)四边形ABCD是平行四边形, AB=CD,ADBC,B=D, 1=DCE,AFCE, AFB=ECB, CE平分BCD, DCE=ECB, AFB=1,在ABF和CDE中, ABFCDE(AAS);(2)由(1)得:1=ECB,DCE=ECB,

27、1=DCE=65,B=D=180265=50考点:(1)平行四边形的性质;(2)全等三角形的判定与性质24、(1)详见解析;(2);(3)【解析】(1)连接OC,根据等腰三角形的性质得到A=OCA,由平行线的性质得到A=BOP,ACO=COP,等量代换得到COP=BOP,由切线的性质得到OBP=90,根据全等三角形的性质即可得到结论;(2)过O作ODAC于D,根据相似三角形的性质得到CDOP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC=12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论【详解】(1)连接OC,O

28、A=OC,A=OCA,ACOP,A=BOP,ACO=COP,COP=BOP,PB是O的切线,AB是O的直径,OBP=90,在POC与POB中,COPBOP,OCP=OBP=90,PC是O的切线;(2)过O作ODAC于D,ODC=OCP=90,CD=AC,DCO=COP,ODCPCO,CDOP=OC2,OP=AC,AC=OP,CD=OP,OPOP=OC2,sinCPO=;(3)连接BC,AB是O的直径,ACBC,AC=9,AB=1,BC=12,当CMAB时,d=AM,f=BM,d+f=AM+BM=1,当M与B重合时,d=9,f=0,d+f=9,d+f的取值范围是:9d+f1【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁