《2023届山东省菏泽市部分市县毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省菏泽市部分市县毕业升学考试模拟卷数学卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1把抛物线y2x2向上平移1个单位,得到的抛物线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)22如图,已知ABC,按以下步骤作图:分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;作直线 MN
2、 交 AB 于点 D,连接 CD若 CD=AC,A=50,则ACB 的度数为( )A90B95C105D11036的相反数为A-6B6CD4下列计算正确的是( ).A(x+y)2=x2+y2B(xy2)3= x3y6Cx6x3=x2D=25根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8107B880108C8.8109D8.810106某校九年级(1)班全体学生实验考试的成绩统计如下表:成绩(分)24252627282930人数(人)256
3、6876根据上表中的信息判断,下列结论中错误的是()A该班一共有40名同学B该班考试成绩的众数是28分C该班考试成绩的中位数是28分D该班考试成绩的平均数是28分7如图是本地区一种产品30天的销售图象,图是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润日销售量一件产品的销售利润,下列结论错误的是()A第24天的销售量为200件B第10天销售一件产品的利润是15元C第12天与第30天这两天的日销售利润相等D第27天的日销售利润是875元8一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,
4、小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟,则列方程正确的是()ABCD9如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BEDF的是()AAECFBBEDFCEBFFDEDBEDBFD10在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A16个B15个C13个D12个二、填空题(本大题共6个小题,每小题3分,共18分)11如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点
5、,若DAB=20,则OCD= .12已知函数是关于的二次函数,则_13为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场)现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_14函数中,自变量的取值范围是_15O的半径为10cm,AB,CD是O的两条弦,且ABCD,AB=16cm,CD=12cm则AB与CD之间的距离是 cm16如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为_三、解答题(共8题,共72分)17(8分)如图,ABD是O的内接三角形,E是弦BD的中点,点C是
6、O外一点且DBCA,连接OE延长与圆相交于点F,与BC相交于点C(1)求证:BC是O的切线;(2)若O的半径为6,BC8,求弦BD的长18(8分)如图,点D为O上一点,点C在直径BA的延长线上,且CDA=CBD判断直线CD和O的位置关系,并说明理由过点B作O的切线BE交直线CD于点E,若AC=2,O的半径是3,求BE的长19(8分)某汽车专卖店销售A,B两种型号的汽车上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,
7、则有哪几种购车方案?哪种购车方案花费金额最少?20(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)2100084002025220018001600950请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均
8、工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平21(8分)如图在由边长为1个单位长度的小正方形组成的1212网格中,已知点A,B,C,D均为网格线的交点在网格中将ABC绕点D顺时针旋转90画出旋转后的图形A1B1C1;在网格中将ABC放大2倍得到DEF,使A与D为对应点22(10分)如图,BAO=90,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=90(2)若m=4,求BE的长(3)在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的
9、值当tanDBE=时,直接写出CDP与BDP面积比23(12分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.24某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整)下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华9075758
10、0结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键2、C【解析】根据等腰三角形的性质得到CDA=A=50,根据三角形内角和
11、定理可得DCA=80,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到B=BCD,根据三角形外角性质可知B+BCD=CDA,进而求得BCD=25,根据图形可知ACB=ACD+BCD,即可解决问题.【详解】CD=AC,A=50CDA=A=50CDA+A+DCA=180DCA=80根据作图步骤可知,MN垂直平分线段BCBD=CDB=BCDB+BCD=CDA2BCD=50BCD=25ACB=ACD+BCD=80+25=105故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题
12、关键.3、A【解析】根据相反数的定义进行求解.【详解】1的相反数为:1故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.4、D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6x3=x3,C错误;=2,D正确;故选D点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键5、D【解析】科学记数法的
13、表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.81010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、D【解析】直接利用众数、中位数、平均数的求法分别分析得出答案【详解】解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;B、该班考试成绩的众数是28分,此选项正确,
14、不合题意;C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题意;D、该班考试成绩的平均数是:(242+255+266+276+288+297+306)40=27.45(分),故选项D错误,符合题意故选D【点睛】此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键7、C【解析】试题解析:A、根据图可得第24天的销售量为200件,故正确;B、设当0t20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,z=-x+25,当x=10时,y=-10+25=15,故正确;C、当0t
15、24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,y=t+100,当t=12时,y=150,z=-12+25=13,第12天的日销售利润为;15013=1950(元),第30天的日销售利润为;1505=750(元),7501950,故C错误;D、第30天的日销售利润为;1505=750(元),故正确故选C8、C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【点睛】本题考查列分式方程解应
16、用题,找准题目中的等量关系,难度不大9、B【解析】由四边形ABCD是平行四边形,可得AD/BC,AD=BC,然后由AE=CF,EBF=FDE,BED=BFD均可判定四边形BFDE是平行四边形,则可证得BE/DF,利用排除法即可求得答案【详解】四边形ABCD是平行四边形,AD/BC,AD=BC,A、AE=CF,DE=BF,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;B、BE=DF,四边形BFDE是等腰梯形,本选项不一定能判定BE/DF;C、AD/BC,BED+EBF=180,EDF+BFD=180,EBF=FDE,BED=BFD,四边形BFDE是平行四边形,BE/DF,故本
17、选项能判定BE/DF;D、AD/BC,BED+EBF=180,EDF+BFD=180,BED=BFD,EBF=FDE,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF故选B【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键10、D【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】解:设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%, ,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个故选:D【点睛】本题考查了利用频率估计概率,根据大量反复试验
18、下频率稳定值即概率得出是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、65【解析】解:由题意分析之,得出弧BD对应的圆周角是DAB,所以,=40,由此则有:OCD=65考点:本题考查了圆周角和圆心角的关系点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握12、1【解析】根据一元二次方程的定义可得:,且,求解即可得出m的值【详解】解:由题意得:,且,解得:,且,故答案为:1【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”13、x(x1)=1【解析】【分析】赛制为单循环形式(
19、每两队之间都赛一场),x个球队比赛总场数为x(x1),即可列方程【详解】有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:x(x1)=1,故答案为x(x1)=1【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.14、【解析】根据分式有意义的条件是分母不为2;分析原函数式可得关系式x12,解得答案【详解】根据题意得x12,解得:x1;故答案为:x1【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为215、2或14【解析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用
20、勾股定理和垂径定理求解即可.【详解】当弦AB和CD在圆心同侧时,如图,AB=16cm,CD=12cm,AE=8cm,CF=6cm,OA=OC=10cm,EO=6cm,OF=8cm,EF=OFOE=2cm;当弦AB和CD在圆心异侧时,如图,AB=16cm,CD=12cm,AF=8cm,CE=6cm,OA=OC=10cm,OF=6cm,OE=8cm,EF=OF+OE=14cm.AB与CD之间的距离为14cm或2cm.故答案为:2或14.16、16【解析】设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为
21、整数即可解答.【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b= a+=,因为,所以1020,解得:a ,又因为小长方形的边长为整数,a=4、5、6、7,因为b=,所以5a是3的倍数,即a=6,b=10,m= a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.三、解答题(共8题,共72分)17、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OEBD, ,再由圆周角定理可得 ,从而得到 OBE DBC90,即 ,命题得证.(2)由勾股定理求出OC,再由OBC
22、的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB. E是弦BD的中点, BEDE,OE BD, BOE A, OBE BOE90. DBC A, BOE DBC, OBE DBC90, OBC90,即BCOB, BC是 O的切线(2)解: OB6,BC8,BCOB, , , ,.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.18、解:(1)直线CD和O的位置关系是相切,理由见解析(2)BE=1【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得DAB+DBA=90,再由CDA=CBD可得CDA+ADO=90,从而
23、得CDO=90,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可试题解析:(1)直线CD和O的位置关系是相切,理由是:连接OD,AB是O的直径,ADB=90,DAB+DBA=90,CDA=CBD,DAB+CDA=90,OD=OA,DAB=ADO,CDA+ADO=90,即ODCE,直线CD是O的切线,即直线CD和O的位置关系是相切;(2)AC=2,O的半径是3,OC=2+3=5,OD=3,在RtCDO中,由勾股定理得:CD=4,CE切O于D,EB切O于B,DE=EB,CBE=90,设DE=EB=x,在RtCBE中,
24、由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理19、 (1) A型车售价为18万元,B型车售价为26万元. (2) 方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少.【解析】(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.【详解】解:(1)设A型车售价为x元,B型车售价为y元,则:解得:答:A型车售价为18万元,B型车售价为26万元.(2)设A型车购买m辆,则B型车购买(6m)辆, 13018m+26(6m) 140,
25、:2m方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少【点睛】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.20、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些(4)能反映该公司员工的月工资实际水平【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】
26、(1)该公司“高级技工”的人数=501323241=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平用1700元或1600元来介绍更合理些(4)(元)能反映该公司员工的月工资实际水平21、(1)见解析(2)见解析【解析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,DEF即为所求【点睛】本题主要考查作图位似变换与旋转变换,解题的
27、关键是掌握位似变换与旋转变换的定义与性质22、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或【解析】由知,再由知、,据此可得,证即可得;易知四边形ABEF是矩形,设,可得,证得,在中,由,列方程求解可得答案;分点C在AF的左侧和右侧两种情况求解:左侧时由知、,在中,由可得关于m的方程,解之可得;右侧时,由知、,利用勾股定理求解可得作于点G,延长GD交BE于点H,由知,据此可得,再分点D在矩形内部和外部的情况求解可得【详解】如图1,、,四边形ABEF是矩形,设,则,在中,即,解得:,的长为1如图1,当点C在AF的左侧时,则,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧
28、时,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,又,且,当点D在矩形ABEF的内部时,由可设、,则,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,则,综上,与面积比为或【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点23、还需要航行的距离的长为20.4海里.【解析】分析:根据题意得:ACD=70,BCD=37,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案详解:由题知:,.在中,(海里).在
29、中,(海里).答:还需要航行的距离的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键24、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的
30、成绩,然后比较大小,即可解答本题【详解】(1)服装项目的权数是:120%30%40%=10%,普通话项目对应扇形的圆心角是:36020%=72;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)2=82.5;(3)李明得分为:8510%+7020%+8030%+8540%=80.5,张华得分为:9010%+7520%+7530%+8040%=78.5,80.578.5,李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键