《山西省运城市夏县达标名校2022-2023学年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省运城市夏县达标名校2022-2023学年中考数学仿真试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花如果有ABEFDC,BCGHAD,那么下列说法错误的是()A红花、绿花种植面积一定相等B紫花、橙花种植面积一定相等C红花、蓝花种植面积一定相等D蓝花、黄花种植面积一定相等2在RtABC中,C=90,AC=1,BC=3,则A的正切值为()A3BCD3如图中任意画一个点,落在黑色区域的概率是()ABCD504若,则的值为( )A12B2C3D05若一个凸多边形的内角和为720,则这个多边形的边数为A4B5C6D76如图,在中,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路
3、径长为( )A或B或C或D或7若,则“”可能是()ABCD8已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )A3.61106B3.61107C3.61108D3.611099一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15方向,那么海岛B离此航线的最近距离是()(结果保留小数点后两位)(参考数据:1.732,1.414)A4.64海里 B5.49海里 C6.12海里 D6.21海里10如图,在ABC中,ACBC,ABC=30,点D是CB延长线上的一点,且BD
4、=BA,则tanDAC的值为( )AB2CD311图1图4是四个基本作图的痕迹,关于四条弧、有四种说法:弧是以O为圆心,任意长为半径所画的弧;弧是以P为圆心,任意长为半径所画的弧;弧是以A为圆心,任意长为半径所画的弧;弧是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A4B3C2D112如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:ab0;ab;sin=;不等式kxax2+bx的解集是0x1其中正确的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AB是O的直径,点E是的中点,连接AF交过E的切
5、线于点D,AB的延长线交该切线于点C,若C30,O的半径是2,则图形中阴影部分的面积是_14计算(a2b)3=_15如图,已知P是正方形ABCD对角线BD上一点,且BPBC,则ACP度数是_度16在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1则这位选手五次射击环数的方差为 17如图,四边形ABCD是菱形,BAD60,AB6,对角线AC与BD相交于点O,点E在AC上,若OE2,则CE的长为_18如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(1,2),B(1,2)两点,若y1y2,则x的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过
6、程或演算步骤19(6分)如图,在ABC中,C = 90,E是BC上一点,EDAB,垂足为D求证:ABCEBD20(6分)如图所示,AB是O的直径,AE是弦,C是劣弧AE的中点,过C作CDAB于点D,CD交AE于点F,过C作CGAE交BA的延长线于点G求证:CG是O的切线求证:AFCF若sinG0.6,CF4,求GA的长21(6分)根据图中给出的信息,解答下列问题:放入一个小球水面升高 ,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?22(8分)先化简,再求值:(),其中x的值从不等式组的整数解中选取23(8分)如图,分别延长ABCD的边到,使,连接EF,分别交于,连
7、结求证:24(10分)如图,AB是O的直径,点C是弧AB的中点,点D是O外一点,AD=AB,AD交O于F,BD交O于E,连接CE交AB于G(1)证明:C=D;(2)若BEF=140,求C的度数;(3)若EF=2,tanB=3,求CECG的值25(10分)如图,AD是等腰ABC底边BC上的高,点O是AC中点,延长DO到E,使AEBC,连接AE求证:四边形ADCE是矩形;若AB17,BC16,则四边形ADCE的面积 若AB10,则BC 时,四边形ADCE是正方形26(12分)如图,在RtABC中,C=90,BE平分ABC交AC于点E,点D在AB上,DEEB(1)求证:AC是BDE的外接圆的切线;(
8、2)若AD=2,AE=6,求EC的长27(12分)如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,求证:AB2=BDBC参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,
9、蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.2、A【解析】【分析】根据锐角三角函数的定义求出即可【详解】在RtABC中,C=90,AC=1,BC=3,A的正切值为=3,故选A【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键3、B【解析】抓住黑白面积相等,根据概率公式可求出概率.【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是. 故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.4、A【解析】先根据得出,然后利用提公因式法和完全平方
10、公式对进行变形,然后整体代入即可求值【详解】,故选:A【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键5、C【解析】设这个多边形的边数为n,根据多边形的内角和定理得到(n2)180=720,然后解方程即可【详解】设这个多边形的边数为n,由多边形的内角和是720,根据多边形的内角和定理得(n2)180=720解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.6、A【解析】根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论【详解】当点D与B重合时
11、,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM, AB是直径 即 点M的轨迹是以EF为直径的半圆, 以EF为直径的圆的半径为1点M运动的路径长为 当 时,同理可得点M运动的路径长为故选:A【点睛】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键7、A【解析】直接利用分式的乘除运算法则计算得出答案【详解】。故选:A【点睛】考查了分式的乘除运算,正确分解因式再化简是解题关键8、C【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相
12、同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数解答:解:将361 000 000用科学记数法表示为3.611故选C9、B【解析】根据题意画出图如图所示:作BDAC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,RtABD中,根据勾股定理得AD=DE=x,AB=BE=CE=2x,由AC=AD+DE+EC=2x+2x=30,解之即可得出答案.【详解】根据题意画出图如图所示:作BDAC,取BE=CE,AC=30,CAB=30ACB=15,ABC=135,又BE=CE,ACB=EBC=15,ABE=120,又CAB=30BA=BE,AD=D
13、E,设BD=x,在RtABD中,AD=DE=x,AB=BE=CE=2x,AC=AD+DE+EC=2x+2x=30,x=5.49,故答案选:B.【点睛】本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.10、A【解析】设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tanDAC的值即可.【详解】设AC=a,则BC=a,AB=2a,BD=BA=2a,CD=(2+)a,tanDAC=2+.故选A.【点睛】本题主要考查特殊角的三角函数值.11、C【解析】根据基本作图的方法即可得到结论【详解】解
14、:(1)弧是以O为圆心,任意长为半径所画的弧,正确;(2)弧是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧是以A为圆心,大于AB的长为半径所画的弧,错误;(4)弧是以P为圆心,任意长为半径所画的弧,正确故选C【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法12、B【解析】根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入,不等式kxax2+bx的解集可以转化为函数图象的高低关系【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a0,b0,则错误将A(1,2)代入y=ax2+bx,则2=9a+1bb=,ab=a()=4a
15、-,故正确;由正弦定义sin=,则正确;不等式kxax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x1或x0,则错误故答案为:B【点睛】二次函数的图像,sin公式,不等式的解集二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用SADES扇形FOE图中阴影部分的面积求出即可【详解】解:连接OE,OF、EF,DE是切线,OEDE,C30,OBOE2,EOC60,OC2OE4,CEOCsin60= 点E是弧BF的中点,EABDAE30,F,E是半
16、圆弧的三等分点,EOFEOBAOF60,OEAD,DAC60,ADC90,CEAE DE,ADDEtan60= SADE FOE和AEF同底等高,FOE和AEF面积相等,图中阴影部分的面积为:SADES扇形FOE故答案为【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出FOE和AEF面积相等是解题关键14、a6b3【解析】根据积的乘方和幂的乘方法则计算即可【详解】原式=(a2b)3=a6b3,故答案为a6b3.【点睛】本题考查了积的乘方和幂的乘方,关键是掌握运算法则.15、22.5【解析】ABCD是正方形,DBC=BCA=45,BP=BC,BCP=BPC=(180-45
17、)=67.5,ACP度数是67.5-45=22.516、2.【解析】试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,方差S2=(57)2+(87)2+(77)2+(67)2+(17)2=2考点:方差17、5或【解析】分析:由菱形的性质证出ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案详解:四边形ABCD是菱形,AB=AD=6,ACBD,OB=OD,OA=OC, ABD是等边三角形,BD=AB=6, 点E在AC上, 当E在点O左边时 当点E在点O右边时 或;故答案为或.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.18、x2或0x2【解析】仔细
18、观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:当x2时,y2y2;当2x0时,y2y2;当0x2时,y2y2;当x2时,y2y2综上所述:若y2y2,则x的取值范围是x2或0x2故答案为x2或0x2【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、证明见解析【解析】试题分析:先根据垂直的定义得出EDB90,故可得出EDBC再由BB,根据有
19、两个角相等的两三角形相似即可得出结论试题解析:解:EDAB, EDB90C90, EDBC BB, 点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键20、(1)见解析;(2)见解析;(3)AG1【解析】(1)利用垂径定理、平行的性质,得出OCCG,得证CG是O的切线.(2)利用直径所对圆周角为和垂直的条件得出2=B,再根据等弧所对的圆周角相等得出1=B,进而证得1=2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,C是劣弧AE的中点,OCAE,CGAE,CGOC,CG是O的切线
20、;(2)证明:连结AC、BC,AB是O的直径,ACB90,2+BCD90,而CDAB,B+BCD90,B2,C是劣弧AE的中点,,1B,12,AFCF;(3)解:CGAE,FADG,sinG0.6,sinFAD0.6,CDA90,AFCF4,DF2.4,AD3.2,CDCF+DF6.4,AFCG,, DG,AGDGAD1【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.21、详见解析【解析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可(1)设应放入大球m个,小球n个,根据题意列二元一次方程组
21、求解即可【详解】解:(1)设一个小球使水面升高x厘米,由图意,得2x=2116,解得x=1设一个大球使水面升高y厘米,由图意,得1y=2116,解得:y=2所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm(1)设应放入大球m个,小球n个,由题意,得,解得:答:如果要使水面上升到50cm,应放入大球4个,小球6个22、-【解析】先化简,再解不等式组确定x的值,最后代入求值即可.【详解】(),=解不等式组,可得:2x2,x=1,0,1,2,x=1,0,1时,分式无意义,x=2,原式=23、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出EGD和FHB全等,从而得出DG=B
22、H,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案详解:证明:在ABCD中,又,又,四边形AGCH为平行四边形, 点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形24、(1)见解析;(2)70;(3)1【解析】(1)先根据等边对等角得出B=D,即可得出结论;(2)先判断出DFE=B,进而得出D=DFE,即可求出D=70,即可得出结论;(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出ACGECA,即可得出结论【详解】(1)AB=AD,B=D,B=C,
23、C=D;(2)四边形ABEF是圆内接四边形,DFE=B,由(1)知,B=D,D=DFE,BEF=140=D+DFE=2D,D=70,由(1)知,C=D,C=70;(3)如图,由(2)知,D=DFE,EF=DE,连接AE,OC,AB是O的直径,AEB=90,BE=DE,BE=EF=2,在RtABE中,tanB=3,AE=3BE=6,根据勾股定理得,AB=,OA=OC=AB=,点C是 的中点, ,AOC=90,AC=OA=2,CAG=CEA,ACG=ECA,ACGECA,CECG=AC2=1【点睛】本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接
24、四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键25、 (1)见解析;(2)1; .【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出ADC=90,根据矩形的判定得出即可;(2)求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;要使ADCE是正方形,只需要ACDE,即DOC=90,只需要OD2+OC2=DC2,即可得到BC的长试题解析:(1)证明:AEBC,AEO=CDO又AOE=COD,OA=OC,AOECOD,OE=OD,而OA=OC,四边形ADCE是平行四边
25、形AD是BC边上的高,ADC=90ADCE是矩形(2)解:AD是等腰ABC底边BC上的高,BC=16,AB=17,BD=CD=8,AB=AC=17,ADC=90,由勾股定理得:AD=12,四边形ADCE的面积是ADDC=128=1当BC=时,DC=DB=ADCE是矩形,OD=OC=2OD2+OC2=DC2,DOC=90,ACDE,ADCE是正方形点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中26、(1)证明见解析;(2)1【解析】试题分析:(1)取BD的中点0,连结OE,如图,由BED=90
26、,根据圆周角定理可得BD为BDE的外接圆的直径,点O为BDE的外接圆的圆心,再证明OEBC,得到AEO=C=90,于是可根据切线的判定定理判断AC是BDE的外接圆的切线;(2)设O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OEBC得,然后根据比例性质可计算出EC试题解析:(1)证明:取BD的中点0,连结OE,如图,DEEB,BED=90,BD为BDE的外接圆的直径,点O为BDE的外接圆的圆心,BE平分ABC,CBE=OBE,OB=OE,OBE=OEB,EB=CBE,OEBC,AEO=C=90,OEAE,AC是BDE的外接圆的切线;(2)解:设
27、O的半径为r,则OA=OD+DA=r+2,OE=r,在RtAEO中,AE2+OE2=AO2,62+r2=(r+2)2,解得r=2,OEBC,即,CE=1考点:1、切线的判定;2、勾股定理27、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,交CB、CA于E、F;以A为圆心,CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质