《山东省蓬莱第二中学2022-2023学年高三一诊考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省蓬莱第二中学2022-2023学年高三一诊考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1在中,分别为所对的边,若函数有极值点,则的范围是( )ABCD2已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )ABCD3已知函数,若有2个零点,则实数的取值范围为( )ABCD4已知双曲线:的左右焦点分别为,为双曲线上一点,为双曲线C渐近线上一点,均位于第一象限,且,则双曲线的离心率为( )ABCD5如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )ABCD6设集合,则( )ABCD7已知等差数列an,则“a2a1”是“数列an为单调递增数列”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件8阿基米德(公元前28
3、7年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )ABCD9宁波古圣王阳明的传习录专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线)从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )ABCD10国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12
4、个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A12个月的PMI值不低于50%的频率为B12个月的PMI值的平均值低于50%C12个月的PMI值的众数为49.4%D12个月的PMI值的中位数为50.3%11如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD12设是虚数单位,则“复数为纯虚数”是“”的( )A充要条件B必要不充分条件C既不充分也不必要条件D充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13 “学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要
5、内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有_种.14如图,已知,为的中点,为以为直径的圆上一动点,则的最小值是_15农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形
6、状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为_;若该六面体内有一球,则该球体积的最大值为_16命题“对任意,”的否定是 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,证明:.18(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随
7、机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2022年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学
8、期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.()证明:;()设,若为棱上一点,使得直线与平面所成角的大小为30,求的值.20(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院人进行了问卷调查得到了如下的列联表:患心肺疾病不患心肺疾病合计男女合计已知在全部人中随机抽取人,抽到患心肺疾病的人的概率为.(1)请将上面
9、的列联表补充完整,并判断是否有的把握认为患心肺疾病与性别有关?请说明你的理由;(2)已知在不患心肺疾病的位男性中,有位从事的是户外作业的工作.为了指导市民尽可能地减少因雾霾天气对身体的伤害,现从不患心肺疾病的位男性中,选出人进行问卷调查,求所选的人中至少有一位从事的是户外作业的概率.下面的临界值表供参考:(参考公式,其中)21(12分)已知的内角,的对边分别为,(1)若,证明:(2)若,求的面积22(10分)已知如图1,在RtABC中,ACB=30,ABC=90,D为AC中点,AEBD于E,延长AE交BC于F,将ABD沿BD折起,使平面ABD平面BCD,如图2所示。()求证:AE平面BCD;
10、()求二面角A-DC-B的余弦值; ()求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.2、C【解析】可设,根据在上为偶函数及便可得到:,可设,且,
11、根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,;若,且,则:;在上是减函数;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.3、C【解析】令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,令,可得,当时,函数在上单调递增;当时,函数在上单调递减.当时,若直线和有两个交点,则.实数的取值范围是.故选:C.
12、【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.4、D【解析】 由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,设,则,解得,即,代入双曲线的方程可得,解得,故选D点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转
13、化为关于的方程(不等式),解方程(不等式),即可得(的取值范围)5、A【解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。6、D【解析】利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算
14、求解能力;属于基础题.7、C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可解:在等差数列an中,若a2a1,则d0,即数列an为单调递增数列,若数列an为单调递增数列,则a2a1,成立,即“a2a1”是“数列an为单调递增数列”充分必要条件,故选C考点:必要条件、充分条件与充要条件的判断8、D【解析】设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切
15、球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.9、B【解析】根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.10、D【解析】根据图形中
16、的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.11、B【解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标
17、系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.12、D【解析】结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果.【详解】若“阅读文章”与“视听学习
18、”两大学习板块相邻,则学习方法有种;若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方法有种;因此共有种.故答案为:【点睛】本题考查排列组合实际问题,考查基本分析求解能力,属基础题.14、【解析】建立合适的直角坐标系,求出相关点的坐标,进而可得的坐标表示,利用平面向量数量积的坐标表示求出的表达式,求出其最小值即可.【详解】建立直角坐标系如图所示:则点,设点,所以,由平面向量数量积的坐标表示可得,其中, 因为,所以的最小值为.故答案为:【点睛】本题考查平面向量数量积的坐标表示和利用辅助角公式求最值;考查数形结合思想和转化与化归能力、运算求解能力;建立直角坐标系,把表示为关于角的
19、三角函数,利用辅助角公式求最值是求解本题的关键;属于中档题.15、 【解析】(1)先算出正四面体的体积,六面体的体积是正四面体体积的倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.【详解】(1)每个三角形面积是,由对称性可知该六面是由两个正四面合成的,可求出该四面体的高为,故四面体体积为,因此该六面体体积是正四面体的2倍, 所以六面体体积是;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了
20、六个三棱锥设球的半径为,所以, 所以球的体积.故答案为:;.【点睛】本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.16、存在,使得【解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”考点:命题的否定三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.【详解】(1),根据题意,
21、在内存在单调减区间,则不等式在上有解,由得,设,则,当且仅当时,等号成立,所以当时,所以存在,使得成立,所以的取值范围为。(2)当时,则,从而所证不等式转化为,不妨设,则不等式转化为,即,即,令,则不等式转化为,因为,则,从而不等式化为,设,则,所以在上单调递增,所以即不等式成立,故原不等式成立.【点睛】本题考查了利用导数研究函数单调性、利用导数证明不等式,这里要强调一点,在证明不等式时,通常是构造函数,将问题转化为函数的极值或最值来处理,本题是一道有高度的压轴解答题.18、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【解析
22、】(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到,结合古典摡型的概率计算公式,即可求解;(2)由题意的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,得到七概率为,即可得到结论.【详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到的概率估计为样本中早期体验用户和中期跟随用户的频率,即.(2)由题意的所有可能值为,记事件为“从早期体验用户中随机抽取1人,该学生愿意为升级多支付10元或
23、10元以上”,事件为“从中期跟随用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,由题意可知,事件,相互独立,且,所以,所以的分布列为0120.180.490.33故的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化.回答二:事件发生概率小,所以可以认为早期体验用户人数增加.【点睛】本题主要考查了离散型随机变量的分布列,数学期望的求解及应用,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布
24、列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.19、()证明见解析()【解析】()由平面,可得,又因为是的中点,即得证;()如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30,列出等式,即得解.【详解】()如图,连接交于点,连接,则是平面与平面的交线,因为平面,故,又因为是的中点,所以是的中点,故.()由条件可知,所以,故以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,设,则,设平面的法向量为,则,即,故取因为直线与平面所成角的大小为30所以,即,解得,故此时.【点睛】本题考查了立体几何和空间向量综
25、合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.20、(1)列联表见解析,有的把握认为患心肺疾病与性别有关,理由见解析;(2).【解析】(1)结合题意完善列联表,计算出的观测值,对照临界值表可得出结论;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、,利用列举法列举出所有的基本事件,并确定事件“所选的人中至少有一位从事的是户外作业”所包含的基本事件数,利用古典概型的概率公式可取得所求事件的概率.【详解】(1)由于在全部人中随机抽取人,抽到患心肺疾病的人的概率为,所以人中患心肺疾病的人数为人,故可将列联表补充如下:患心肺疾病不患心肺疾病合计男女合计.故有
26、的把握认为患心肺疾病与性别有关;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、.从中选取三人共有以下种情形:、.其中至少有一位从事的是户外作业的有种情形,分别为:、,所以所选的人中至少有一位从事的是户外作业的概率为.【点睛】本题考查利用独立性检验的基本思想解决实际问题,同时也考查了利用列举法求解古典概型的概率问题,考查计算能力,属于中等题.21、(1)见解析(2)【解析】(1)由余弦定理及已知等式得出关系,再由正弦定理可得结论;(2)由余弦定理和已知条件解得,然后由面积公式计算【详解】解:(1)由余弦定理得,由得到,由正弦定理得因为,所以(2)由题意及余弦定理可知
27、,由得,即,联立解得,所以【点睛】本题考查利用正余弦定理解三角形考查三角形面积公式,由已知条件本题主要是应用余弦定理求出边解题时要注意对条件的分析,确定选用的公式22、()证明见解析;();()1:5【解析】()由平面ABD平面BCD,交线为BD,AEBD于E,能证明AE平面BCD;()以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;()利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可【详解】()证明:平面ABD平面BCD,交线为BD,又在ABD中,AEBD于E,AE平面
28、ABD,AE平面BCD()由(1)知AE平面BCD,AEEF,由题意知EFBD,又AEBD,如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,设AB=BD=DC=AD=2,则BE=ED=1,AE=,BC=2,BF=,则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),F(,0,0),C(,2,0),由AE平面BCD知平面BCD的一个法向量为,设平面ADC的一个法向量,则,取x=1,得,二面角A-DC-B的平面角为锐角,故余弦值为()三棱锥B-AEF与四棱锥A-FEDC的体积的比为:1:5.【点睛】本题考查线面垂直的证明、几何体体积计算、二面角有关的立体几何综合题,属于中等题.