山东省莒县重点名校2023年中考二模数学试题含解析.doc

上传人:lil****205 文档编号:87994813 上传时间:2023-04-19 格式:DOC 页数:22 大小:1.45MB
返回 下载 相关 举报
山东省莒县重点名校2023年中考二模数学试题含解析.doc_第1页
第1页 / 共22页
山东省莒县重点名校2023年中考二模数学试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《山东省莒县重点名校2023年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省莒县重点名校2023年中考二模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )ABCD2如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( )ABCD3如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D104如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的周长为18,则四边形EFCD的周长为A14B13C12D1054的平方根是()A2B2C8D86设a,b是常数,不等式的解集为,则关于x的不等式的解集是( )A

3、BCD7如图,在ABC中,AB=AC,AD和CE是高,ACE=45,点F是AC的中点,AD与FE,CE分别交于点G、H,BCE=CAD,有下列结论:图中存在两个等腰直角三角形;AHECBE;BCAD=AE2;SABC=4SADF其中正确的个数有()A1B2C3D48在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )AB或CD或9如图,已知ABC中,A=75,则1+2=( )A335B255C155D15010如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为()A20 B16 C12 D811如图,点A

4、、B、C、D、O都在方格纸的格点上,若COD是由AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A30B45C90D13512我国古代数学著作九章算术卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知点,在二次函数的图象上,若,则_(填“”“”“”)14在数轴上,点A和点B分别表示数a和b,且在原点的两侧,

5、若=2016,AO=2BO,则a+b=_15如图,数轴上不同三点对应的数分别为,其中,则点表示的数是_16数据:2,5,4,2,2的中位数是_,众数是_,方差是_17如图,在ABC中,C90,BC16 cm,AC12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t_时,CPQ与CBA相似18如图,AB为O的直径,BC为O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且AED=27,则BCD的度数为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明

6、过程或演算步骤19(6分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,一次函数的图象与轴的正半轴交于点求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整图象:当时,写出的取值范围20(6分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数小马虎根据竞赛成绩,绘制了如图所示的统计图经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位

7、成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛预赛分为A、B、C、D四组进行,选手由抽签确定张明、李刚两名同学恰好分在同一组的概率是多少?21(6分)解不等式组,请结合题意填空,完成本题的解答(1)解不等式,得 ;(2)解不等式,得 ;(3)把不等式和的解集在数轴上表示出来:(4)原不等式的解集为 22(8分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图和图请根据相关信息,解答下列问题:(1)该校有_个班级,补全条形统计图;(2)求该

8、校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童23(8分)如图,曲线BC是反比例函数y(4x6)的一部分,其中B(4,1m),C(6,m),抛物线yx2+2bx的顶点记作A(1)求k的值(2)判断点A是否可与点B重合;(3)若抛物线与BC有交点,求b的取值范围24(10分)计算:(2)0+()1+4cos30|4|25(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系(1)L1表示哪辆

9、汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?26(12分)如图,在ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线ABBC以每秒1个单位长度的速度向中点C运动,过点P作PQAB,交折线ADDC于点Q,将线段PQ绕点P顺时针旋转90,得到线段PR,连接QR设PQR与ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒)(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3

10、)当点R落在ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,PCD是等腰三角形时所有的t值27(12分)如图,分别与相切于点,点在上,且,垂足为求证:;若的半径,求的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称图形故错误;B不是轴对称图形,也不是中心对称图形故错误;C是轴对称图形,也是中心对称图形故正确;D不是轴对称图形,是中心对称图形故错误故选C【点睛】掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找

11、对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180后与原图重合2、B【解析】如图所示,过O点作a的平行线d,根据平行线的性质得到23,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,ad,由两直线平行同位角相等得到2350,木条c绕O点与直线d重合时,与直线a平行,旋转角1290.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.3、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=()2=9,圆锥的侧面积=56=15,所以圆

12、锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图4、C【解析】平行四边形ABCD,ADBC,AD=BC,AO=CO,EAO=FCO,在AEO和CFO中,AEOCFO,AE=CF,EO=FO=1.5,C四边形ABCD=18,CD+AD=9,C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.5、B【解析】依据平方根的定义求解即可【详解】(1)1=4,4的平方根

13、是1故选B【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键6、C【解析】根据不等式的解集为x 即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a0【详解】解不等式,移项得: 解集为x ,且a0, 解不等式,移项得:bxa两边同时除以b得:x,即x- 故选C【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键7、C【解析】图中有3个等腰直角三角形,故结论错误;根据ASA证明即可,结论正确;利用面积法证明即可,结论正确;利用三角形的中线的性质即可证明,结论正确.【详解】CEAB,ACE=45,ACE是等腰直角三角形,AF=CF,EF=AF=CF,AEF,EFC都是

14、等腰直角三角形,图中共有3个等腰直角三角形,故错误,AHE+EAH=90,DHC+BCE=90,AHE=DHC,EAH=BCE,AE=EC,AEH=CEB=90,AHECBE,故正确,SABC=BCAD=ABCE,AB=AC=AE,AE=CE,BCAD=CE2,故正确,AB=AC,ADBC,BD=DC,SABC=2SADC,AF=FC,SADC=2SADF,SABC=4SADF故选C【点睛】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题8、B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n

15、)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m2,n2)或(m(-2),n(-2),即(2m,2n)或(-2m,-2n),故选B点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k9、B【解析】A+B+C=180,A=75,B+C=180A=1051+2+B+C=360,1+2=360105=255故选B点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n2)180(n3且n为整数)是解题的关键10、B【解析】首先证明:OE=BC,由AE+E

16、O=4,推出AB+BC=8即可解决问题;【详解】四边形ABCD是平行四边形,OA=OC,AE=EB,OE=BC,AE+EO=4,2AE+2EO=8,AB+BC=8,平行四边形ABCD的周长=28=16,故选:B【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型11、C【解析】根据勾股定理求解.【详解】设小方格的边长为1,得,OC=,AO=,AC=4,OC2+AO2=16,AC2=42=16,AOC是直角三角形,AOC=90故选C【点睛】考点:勾股定理逆定理.12、D【解析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而

17、可以解答本题【详解】由题意可得:,故选D【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】抛物线的对称轴为:x=1,当x1时,y随x的增大而增大.若x1x21时,y1y2.故答案为14、-672或672【解析】 ,a-b=2016, AO=2BO,A和点B分别在原点的两侧a=-2b. 当a-b=2016时,-2b-b=2016,解得:b=-672.a=2(-672)=1342,a+b=1344+(-672)=672.同理可得当a-b=-2016时,a+b=-672, a+b=672,故答

18、案为:672或672.15、1【解析】根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解【详解】数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,b=3+(-4)=-1,|b|=|c|,c=1故答案为1【点睛】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标16、2 2 1.1 【解析】先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=(x1-)2+(x2-)2+(xn-)2进行计算即可【详解】解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,则中

19、位数是2;众数为2;这组数据的平均数是(2+2+2+4+5)5=3,方差是: (23)2+(23)2+(23)2+(43)2+(53)2=1.1.故答案为2,2,1.1.【点睛】本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.17、4.8或【解析】根据题意可分两种情况,当CP和CB是对应边时,CPQCBA与CP和CA是对应边时,CPQCAB,根据相似三角形的性质分别求出时间t即可.【详解】CP和CB是对应边时,CPQCBA,所以,即,解得t4.8;CP和CA是对应边时,CPQCAB,所以,即,解得t.综上所述,当t4.8或时,CPQ与CBA相似【点睛】此题主

20、要考查相似三角形的性质,解题的关键是分情况讨论.18、117【解析】连接AD,BD,利用圆周角定理解答即可【详解】连接AD,BD,AB为O的直径,ADB=90,AED=27,DBA=27,DAB=90-27=63,DCB=180-63=117,故答案为117【点睛】此题考查圆周角定理,关键是根据圆周角定理解答三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)点的坐标为;(2);(3)或【解析】(1)点A在反比例函数上,轴,求坐标;(2)梯形面积,求出B点坐标,将点代入 即可;(3)结合图象直接可求解;【详解】解:(1)点在的图像上,轴,点的坐标为;(2

21、)梯形的面积是3,解得,点的坐标为,把点与代入得解得:,一次函数的解析式为(3)由题意可知,作出函数和函数图像如下图所示:设函数和函数的另一个交点为E,联立 ,得 点E的坐标为 即 的函数图像要在的函数图像上面,可将图像分割成如下图所示:由图像可知所对应的自变量的取值范围为:或【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键20、(1)见解析;(2)140人;(1). 【解析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题

22、意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率【详解】(1)由统计图可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全体(%)512.5101517.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,25%=40,(1+2)12.5%=40,(7+5)10%=40,(6+8)15%=40,(4+4)17.5%40,故乙组得5分的人数统计有误,正确人数应为:4017.5%4=1(2)800(5%+12.5%)=140(人);(1)如图得:共有16种等可能的结果,所选两人正好分在一组的有4种情况,所选两人正好分在一组的概率是:【

23、点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件21、(1)x1;(1)x1;(3)见解析;(4)1x1.【解析】先求出不等式的解集,再求出不等式组的解集即可【详解】解:(1)解不等式,得x1,(1)解不等式,得x1,(3)把不等式和的解集在数轴上表示出来:;(4)原不等式组的解集为1x1,故答案为x1,x1,1x1【点睛】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键22、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1【解析】(1)根据有7名留守儿童班级有2个,所占的百分

24、比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;(3)利用班级数60乘以(2)中求得的平均数即可【详解】解:(1)该校的班级数是:22.5%=16(个)则人数是8名的班级数是:161262=5(个)条形统计图补充如下图所示:故答案为16;(2)每班的留守儿童的平均数是:(16+27+58+610+22)16=3将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2故这组数据的众数是10,中位数是(8+10)2=3即统

25、计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;(3)该镇小学生中,共有留守儿童603=1(名)答:该镇小学生中共有留守儿童1名【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小也考查了平均数、中位数和众数以及用样本估计总体23、(1)12;(2)点A不与点B重合;(3)【解析】(1)把B、C两点代入解析式,得到k4(1m)6(m),求得m2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b4,且b23

26、,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b ,抛物线右半支经过点B;当抛物线经过点C,解得,b,抛物线右半支经过点C;从而求得b的取值范围为b【详解】解:(1)B(4,1m),C(6,m)在反比例函数 的图象上,k4(1m)6(m),解得m2,k41(2)12;(2)m2,B(4,3),抛物线yx2+2bx(xb)2+b2,A(b,b2)若点A与点B重合,则有b4,且b23,显然不成立,点A不与点B重合;(3)当抛物线经过点B(4,3)时,有342+2b4,解得,b, 显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有262+2b6,解得,b,这时仍然是抛物线右半支经过

27、点C,b的取值范围为b【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题24、4【解析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案【详解】(2)0+()1+4cos30|4|=1+3+4(42)=4+24+2=4【点睛】此题主要考查了实数运算,正确化简各数是解题关键25、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇【解析】试题分析:(1)直接根据

28、函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解试题解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330240)60=1.5(千米/分);(3)设L1为 把点(0,330),(60,240)代入得 所以 设L2为 把点(60,60)代入得 所以 (4)当时, 330150120=60(千米);

29、所以2小时后,两车相距60千米;(5)当时, 解得 即行驶132分钟,A、B两车相遇26、(1);(2)(9t);(3)S =t2+t;S=t2+1S=(9t)2;(3)3或或4或【解析】(1)根据题意点R与点B重合时t+t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)将线段PQ绕点P顺时针旋转90,得到线段PR,PQ=PR,QPR=90,QPR为等腰直角三角形当运动时间为t秒时,AP=t,PQ=PQ=APtanA=t点R与点B重合,AP+PR

30、=t+t=AB=3,解得:t=(2)当点P在BC边上时,3t9,CP=9t,tanA=,tanC=,sinC=,PQ=CPsinC=(9t)(3)如图1中,当t3时,重叠部分是四边形PQKB作KMAR于MKBRQAR, =, =,KM=(t3)=t,S=SPQRSKBR=(t)2(t3)(t)=t2+t如图2中,当3t3时,重叠部分是四边形PQKBS=SPQRSKBR=33tt=t2+1如图3中,当3t9时,重叠部分是PQKS=SPQC=(9t)(9t)=(9t)2(3)如图3中,当DC=DP1=3时,易知AP1=3,t=3当DC=DP2时,CP2=2CD,BP2=,t=3+当CD=CP3时,t=4当CP3=DP3时,CP3=2,t=9=综上所述,满足条件的t的值为3或或4或【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题27、(1)见解析(2)5【解析】解:(1)证明:如图,连接,则,四边形是平行四边形(2)连接,则,设,则在中,有即

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁