《广东省深圳中学2023届中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省深圳中学2023届中考押题数学预测卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A60B50C40D302若|a|=a,则a为()Aa是负数Ba是正数Ca=0D负数或零
2、3计算 的结果为()A1BxCD4在同一直角坐标系中,二次函数y=x2与反比例函数y=(x0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令=x1+x2+x3,则的值为()A1 Bm Cm2 D5(2011雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )A(3,4) B(3,4)C(4,3) D(3,4)6如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式ya(xk)2+h已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的
3、水平距离为9m高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A球不会过网B球会过球网但不会出界C球会过球网并会出界D无法确定7九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )ABCD8如图所示,直线ab,1=35,2=90,则3的度数为()A125B135C145D1559如图,矩形是由三个全等矩形拼成的,与,分别交于点,设,的面积依次为,若,则的值为( )A6B8C10D1210如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQ
4、DP;OA2=OEOP;SAOD=S四边形OECF;当BP=1时,tanOAE= ,其中正确结论的个数是( )A1B2C3D411函数y=ax2+1与(a0)在同一平面直角坐标系中的图象可能是( )ABCD12下列各数中,最小的数是( )A0BCD二、填空题:(本大题共6个小题,每小题4分,共24分)13不等式的解集是_14据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_人次15观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_16如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有_白色纸片,第n个
5、图案中有_张白色纸片17如图,在矩形ABCD中,AB=,E是BC的中点,AEBD于点F,则CF的长是_18已知,如图,ABC中,DEFGBC,ADDFFB123,若EG3,则AC 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)解方程组.20(6分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件求原计划每天生产的零件个数和规定的天数为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个
6、工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数21(6分)如图所示,在中,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分22(8分)如图1,ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN(1)求证:PMN是等腰三角形;(2)将ADE绕点A逆时针旋转,如图2,当点D、E分别在边AC两侧时,求证:PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、
7、C在一条直线上时,请直接写出此时BD的长23(8分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由24(10分)如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF求证:C=90;当BC=3,sinA=时,求AF的长25(10分
8、)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a20,b10,求整个长方形运动场的面积26(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元求y与x的函数关系式并直接写出自变量x的取值范围每件玩具的售价定为多少元时,月销售利润恰为2520元
9、?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?27(12分)已知:如图,ABC,射线BC上一点D求作:等腰PBD,使线段BD为等腰PBD的底边,点P在ABC内部,且点P到ABC两边的距离相等参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】先根据平角的定义求出1的度数,再由平行线的性质即可得出结论【详解】解:118010080,ac,180806040故选:C【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补2、D【解析】根据绝对值的性质解答.【详解】解:当a0时,|a|=
10、-a,|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数-a;当a是零时,a的绝对值是零3、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则4、D【解析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的
11、联系,从而解答.5、A【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,点P的坐标为(3,4)故选A6、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得详解:根据题意,将点A(0,2)代入 得:36a+2.6=2,解得: y与x的关系式为 当x=9时, 球能过球网,当x=18时, 球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.7、C【解析】试题分析:由题意可得,第一小组对应的圆心角度数是:360=72,故选C考点:1.扇形统计图;2.条形统计图8、A【
12、解析】分析:如图求出5即可解决问题详解:ab,1=4=35,2=90,4+5=90,5=55,3=180-5=125,故选:A点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题9、B【解析】由条件可以得出BPQDKMCNH,可以求出BPQ与DKM的相似比为,BPQ与CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出【详解】矩形AEHC是由三个全等矩形拼成的,AB=BD=CD,AEBFDGCH,BQP=DMK=CHN,ABQADM,ABQACH,EF=FG= BD=CD,ACEH,四边形BEFD、四边形DFGC是平行四边形, BEDF
13、CG,BPQ=DKM=CNH, 又BQP=DMK=CHN,BPQDKM,BPQCNH,即,即,解得:,故选:B【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键10、C【解析】四边形ABCD是正方形,AD=BC,DAB=ABC=90,BP=CQ,AP=BQ,在DAP与ABQ中, ,DAPABQ,P=Q,Q+QAB=90,P+QAB=90,AOP=90,AQDP;故正确;DOA=AOP=90,ADO+P=ADO+DAO=90,DAO=P,DAOAPO, ,AO2=ODOP,AEAB,AEAD,ODOE,OA2O
14、EOP;故错误;在CQF与BPE中 ,CQFBPE,CF=BE,DF=CE,在ADF与DCE中, ,ADFDCE,SADFSDFO=SDCESDOF,即SAOD=S四边形OECF;故正确;BP=1,AB=3,AP=4,AOPDAP, ,BE=,QE=,QOEPAD, ,QO=,OE=,AO=5QO=,tanOAE=,故正确,故选C点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键11、B【解析】试题分析:分a0和a0两种情况讨论:当a0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选
15、项图象符合;当a0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合故选B考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用12、D【解析】根据实数大小比较法则判断即可【详解】01,故选D【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】首先去分母进而解出不等式即可.【详解】去分母得,1-2x15移项得,-2x15-1合并同类项得,-2x14系数化为1,得x-7.故答案为x-7.【点睛】此题考查了解一元一次不等式,
16、解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变14、8.03106【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数803万=.15、 【解析】试题解析:根据题意得,这一组数的第个数为: 故答案为点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续
17、正整数的平方,写出第个数即可16、13 3n+1 【解析】分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可详解:第1个图案中有白色纸片31+1=4张第2个图案中有白色纸片32+1=7张,第3图案中有白色纸片33+1=10张,第4个图案中有白色纸片34+1=13张第n个图案中有白色纸片3n+1张,故答案为:13、3n+1.点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.17、 【解析】试题解析:四边形ABCD是矩形, AEBD, ABEADB, E是BC的中点, 过F作FGBC于G, 故答案为18、1【解析】试题分析:根据DE
18、FGBC可得ADEAFGABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1考点:三角形相似的应用三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、或【解析】把y=x代入,解得x的值,然后即可求出y的值;【详解】把(1)代入(2)得:x2+x20,(x+2)(x1)0,解得:x2或1,当x2时,y2,当x1时,y1,原方程组的解是或【点睛】本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数20、(1)2400个, 10天;(2)1人【解析】(1)设原计划每天生产零件x个,根据相等关系“原计划生产2
19、4000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)(规定天数-2)=零件总数24000个”可列方程520(1+20%)+2400 (10-2)=24000,解得y的值即为原计划安排的工人人数【详解】解:(1)解:设原计划每天生产零件x个,由题意得,解得x=2400,经检验,x=2400是原方程的根,且符合题意规定的天数为240002400=10(天)答:原计划每天生产零件2400个,规定的天数是
20、10天(2)设原计划安排的工人人数为y人,由题意得,520(1+20%)+2400 (10-2)=24000,解得,y=1经检验,y=1是原方程的根,且符合题意答:原计划安排的工人人数为1人【点睛】本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验21、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
21、EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90,3B=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键22、(1)见解析;(2)见解析;.【解析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)先证明ABDACE,得BD=CE,同理根据三角形中位线定理可得结论;如图4,连接AM,计算AN和DE、EM的长,如图3,证明A
22、BDCAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,点N,P是BC,CD的中点,PNBD,PN=BD,点P,M是CD,DE的中点,PMCE,PM=CE,AB=AC,AD=AE,BD=CE,PM=PN,PMN是等腰三角形;(2)如图2,DAE=BAC,BAD=CAE,AB=AC,AD=AE,ABDACE,点M、N、P分别是线段DE、BC、CD的中点,PN=BD,PM=CE,PM=PN,PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,BAC=DAE,BAD=CAE,AB=AC,AD=AE,ABDCAE,BD=CE,如图4,连接A
23、M,M是DE的中点,N是BC的中点,AB=AC,A、M、N共线,且ANBC,由勾股定理得:AN=4,AD=AE=1,AB=AC=6,=,DAE=BAC,ADEAEC,AM=,DE=,EM=,如图3,RtACM中,CM=,BD=CE=CM+EM=【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出ABDACE,解(2)的关键是判断出ADEAEC23、(1);y2=2250x;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应
24、选择乙商场更优惠【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即可;(2)由收费相同,列出方程求解即可;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y1=3000;当x1时,y1=3000+3000(x1)(130%)=2100x+1;y2=3000x(125%)=2250x,y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+1=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+1=21005+1=11400,y2=2250x=22505=11250,1140011250,所买
25、商品为5件时,应选择乙商场更优惠考点:一次函数的应用24、(1)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OEBC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接OE,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBCACC=90(2)在ABC,C=90,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角
26、函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识25、(1)(2)(3)【解析】试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可试题解析:(1)矩形B的长可表示为:a+b,宽可表示为:a-b,每个B区矩形场地的周长为:2(a+b+a-b)=4a;(2)整个矩形的长为a+a+b=2a+b,宽为:a+a-b=2a-b,整个矩形的周长为:2(2a+b+2a-b)=8a;(3)矩形的面积为:S=(2a+b)(2a-b)= ,把,代入得,S=4202-
27、102=4400-100=1500.点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽26、(1)y10x2+130x+2300,0x10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润月销售量即可求出函数关系式(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可(3)把y=-10x2+130
28、x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0x10且x为正整数,分别计算出当x=6和x=7时y的值即可【详解】(1)根据题意得:y(30+x20)(23010x)10x2+130x+2300,自变量x的取值范围是:0x10且x为正整数;(2)当y2520时,得10x2+130x+23002520,解得x12,x211(不合题意,舍去) 当x2时,30+x32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元(3)根据题意得:y10x2+130x+230010(x6.5)2+2722.5,a100,当x6.5时,y有最大值为2722.5,0x10且x为正整数,当x
29、6时,30+x36,y2720(元),当x7时,30+x37,y2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程27、作图见解析.【解析】由题意可知,先作出ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.【详解】点P到ABC两边的距离相等,点P在ABC的平分线上;线段BD为等腰PBD的底边,PB=PD,点P在线段BD的垂直平分线上,点P是ABC的平分线与线段BD的垂直平分线的交点,如图所示:【点睛】此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.