《2023届广东省统考重点名校中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省统考重点名校中考押题数学预测卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算正确的是()Aa4ba2b=a2b B(ab)2=a2b2Ca2a3=a6 D3a2+2a2=a22观察下列图案,是轴对称而不是中心对称的是()ABCD3如图,在正方形ABCD中,AB,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是()ABCD4如图,在RtABC中,ABC=90,AB=6,BC=8,点E是ABC的内心,过点E作EFAB交AC于点F,则EF的长为( )ABCD5如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的
3、一部分现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()ABCD6如图,OP平分AOB,PCOA于C,点D是OB上的动点,若PC6cm,则PD的长可以是()A7cmB4cmC5cmD3cm7有一个数用科学记数法表示为5.2105,则这个数是()A520000BC52000D52000008如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AAC=CDBOM=BMCA=ACDDA=BOD9舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A4.9951011B49.951010C0.49
4、951011D4.995101010如图,点A、B、C、D、O都在方格纸的格点上,若COD是由AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A30B45C90D135二、填空题(共7小题,每小题3分,满分21分)11因式分解:_12当x=_时,分式 值为零13关于x的一元二次方程x22x+m10有两个实数根,则m的取值范围是_14如图,将直尺与含30角的三角尺摆放在一起,若1=20,则2的度数是_.15如图,平行于x轴的直线AC分别交抛物线(x0)与(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则=_16计算:_.17如图,矩形ABCD中,E为BC的
5、中点,将ABE沿直线AE折叠时点B落在点F处,连接FC,若DAF18,则DCF_度三、解答题(共7小题,满分69分)18(10分)已知:如图所示,在中,求和的度数.19(5分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示)请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股
6、数的可能性一样吗?20(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?21(10分)综合与实践旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题
7、:已知矩形ABCD矩形ABCD,它们各自对角线的交点重合于点O,连接AA,CC请你帮他们解决下列问题:观察发现:(1)如图1,若ABAB,则AA与CC的数量关系是_;操作探究:(2)将图1中的矩形ABCD保持不动,矩形ABCD绕点O逆时针旋转角度(090),如图2,在矩形ABCD旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形ABCD绕点O旋转至AAAD时,若AB=6,BC=8,AB=3,求AA的长22(10分)如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物
8、线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.23(12分)如图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧求证:AB为C的切线求图中阴影部分的面积24(14分)如图已知ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得PBC的面积与DBC的面积相等(保留作图痕迹,不写做法)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据各个选项中的式子可以计算出正确的结果,从而可以解答
9、本题【详解】 故选项A错误, 故选项B错误,故选项C错误,故选项D正确,故选:D【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.2、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形这个旋转点,就
10、叫做对称中心3、B【解析】在正方形ABCD中, AB=,AC4,ADDC,DAPDCA45o,当点Q在AD上时,PAPQ,DP=AP=x,S ;当点Q在DC上时,PCPQCP4x,S;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况4、A【解析】过E作EGAB,交AC于G,易得CG=EG,EF=AF,依据ABCGEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论【详解】过E作EGBC,交AC于G,则BCE=CEGCE平分BCA,BCE=ACE,ACE=CEG,CG=
11、EG,同理可得:EF=AFBCGE,ABEF,BCA=EGF,BAC=EFG,ABCGEFABC=90,AB=6,BC=8,AC=10,EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5kAC=10,3k+5k+4k=10,k=,EF=3k=故选A【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形5、D【解析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可【详解】因为共有12个大小相同的小正方形,
12、其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是故选D【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键6、A【解析】过点P作PDOB于D,根据角平分线上的点到角的两边距离相等可得PCPD,再根据垂线段最短解答即可【详解】解:作PDOB于D,OP平分AOB,PCOA,PDOA,PDPC6cm,则PD的最小值是6cm,故选A【点睛】考查了角平分线上的点到
13、角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键7、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】5.2105=520000, 故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、D【解析】根据垂径定理判断即可【详解】连接DA直径AB弦CD,垂足为M,CM=MD,CAB=DAB2DAB=BOD,CAD=BOD
14、故选D【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键9、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】将499.5亿用科学记数法表示为:4.9951故选D【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、C【解析】根据勾股定理求解.【
15、详解】设小方格的边长为1,得,OC=,AO=,AC=4,OC2+AO2=16,AC2=42=16,AOC是直角三角形,AOC=90故选C【点睛】考点:勾股定理逆定理.二、填空题(共7小题,每小题3分,满分21分)11、【解析】提公因式法和应用公式法因式分解【详解】解: 故答案为:【点睛】本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式12、1【解析】试题解析:分式的值为0,则: 解得: 故答案为13、m1【解析】根据一元二次方程有实数根,得出0,建立关于m的不等式,求出m
16、的取值范围即可【详解】解:由题意知,44(m1)0,m1,故答案为:m1【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式的关系:0,方程有两个不相等的实数根;0,方程有两个相等的实数根;0,方程没有实数根是本题的关键14、50【解析】先根据三角形外角的性质求出BEF的度数,再根据平行线的性质得到2的度数【详解】如图所示:BEF是AEF的外角,1=20,F=30,BEF=1+F=50,ABCD,2=BEF=50,故答案是:50【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和)15、5- 【解析】试题分析:本题我们可以假
17、设一个点的坐标,然后进行求解设点C的坐标为(1,),则点B的坐标为(,),点D的坐标为(1,1),点E的坐标为(,1),则AB=,DE=1,则=5考点:二次函数的性质16、x+1【解析】先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果【详解】解:=.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键17、1【解析】由折叠的性质得:FEBE,FAEBAE,AEBAEF,求出BAEFAE1,由直角三角形的性质得出AEFAEB54,求出CEF72,求出FECE,由等腰三角形的性质求出ECF54,即可得出DCF的度数【详解】解:四边形ABCD是矩
18、形,BADBBCD90,由折叠的性质得:FEBE,FAEBAE,AEBAEF,DAF18,BAEFAE(9018)1,AEFAEB90154,CEF18025472,E为BC的中点,BECE,FECE,ECF(18072)54,DCF90ECF1.故答案为1【点睛】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出ECF的度数是解题的关键三、解答题(共7小题,满分69分)18、,.【解析】根据等腰三角形的性质即可求出B,再根据三角形外角定理即可求出C.【详解】在中,在三角形中,又,在三角形中,.【点睛】此题主要考查等腰三角形的性质,解题的关
19、键是熟知等边对等角.19、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】试题分析:(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.试题解析:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两
20、张卡片上的数都是勾股数的有6种,P2=,P1=,P2=,P1P2淇淇与嘉嘉抽到勾股数的可能性不一样20、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:3645%=80人;开私家车的人数m=8025%=20;扇形统计图中“骑自行车”的圆心角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人
21、改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可试题解析:解:(1)80,20,72.(2)骑自行车的人数为:8020%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,解得x50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用21、(1)AA=CC;(2)成立,证明见解析;(3)AA=【解析】(1)连接AC、AC,根据题意得到点A、A、C、C在同一条直线上,根据矩形的性质得到OA=OC,OA=OC,
22、得到答案;(2)连接AC、AC,证明AOACOC,根据全等三角形的性质证明;(3)连接AC,过C作CEAB,交AB的延长线于E,根据相似多边形的性质求出BC,根据勾股定理计算即可【详解】(1)AA=CC,理由如下:连接AC、AC,矩形ABCD矩形ABCD,CAB=CAB,ABAB,点A、A、C、C在同一条直线上,由矩形的性质可知,OA=OC,OA=OC,AA=CC,故答案为AA=CC;(2)(1)中的结论还成立,AA=CC,理由如下:连接AC、AC,则AC、AC都经过点O,由旋转的性质可知,AOA=COC,四边形ABCD和四边形ABCD都是矩形,OA=OC,OA=OC,在AOA和COC中,AO
23、ACOC,AA=CC;(3)连接AC,过C作CEAB,交AB的延长线于E,矩形ABCD矩形ABCD,即,解得,BC=4,EBC=BCC=E=90,四边形BECC为矩形,EC=BC=4,在RtABC中,AC=10,在RtAEC中,AE=2,AA+BE=23,又AA=CC=BE,AA=【点睛】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键22、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2
24、),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,可知抛物线过点.将原抛物线沿轴向下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴为.由题得(0,1)当时,如图,此时,点的坐标为.当时,如图,同理可
25、得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用23、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键24、见解析【解析】三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.【详解】作CDP=BCD,PD与AC的交点即P.【点睛】本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.