广东省广州重点中学2023届中考数学全真模拟试题含解析.doc

上传人:lil****205 文档编号:87994172 上传时间:2023-04-19 格式:DOC 页数:16 大小:573KB
返回 下载 相关 举报
广东省广州重点中学2023届中考数学全真模拟试题含解析.doc_第1页
第1页 / 共16页
广东省广州重点中学2023届中考数学全真模拟试题含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《广东省广州重点中学2023届中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省广州重点中学2023届中考数学全真模拟试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1如图,下列条件不能判定ADBABC的是( )AABD=ACBBADB=ABCCAB2=ADACD 2四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )AB1CD3现有三张背面完全相同的卡片,正面分别标有数字1,2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()ABCD4以x为自变量的二次函数y=x22(b2)x+b21的图象不经过第三象限,则实数b的取值范围是( )Ab1.25Bb1或b1Cb2D1b25小

3、亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家妈妈8:30从家出发,乘车沿相同路线去姥姥家在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示根据图象得出下列结论,其中错误的是()A小亮骑自行车的平均速度是12 km/hB妈妈比小亮提前0.5 h到达姥姥家C妈妈在距家12 km处追上小亮D9:30妈妈追上小亮6甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息已知甲先出发2s在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:a8;b92;c1其中正确的是( )AB仅有C

4、仅有D仅有7下列选项中,可以用来证明命题“若a2b2,则ab“是假命题的反例是()Aa2,b1Ba3,b2Ca0,b1Da2,b18如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是(),SABC=1,OF=5,点B的坐标为(2,2.5)A1个B2个C3个D4个9如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(,4),则AOC的面积为A12B9C6D410如图,ABC中,DE垂直平分AC交AB于E,A=30,ACB=80,则BCE等

5、于()A40B70C60D50二、填空题(本大题共6个小题,每小题3分,共18分)11关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是_12我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.13如图,在扇形AOB中,AOB=90,点C为OA的中点,CEOA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影

6、部分的面积为 .14如图,ABC中,点D、E分别在边AB、BC上,DEAC,若DB=4,AB=6,BE=3,则EC的长是_15算术平方根等于本身的实数是_.16_三、解答题(共8题,共72分)17(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.18(8分)如图,已知BD是ABC的角平分线,点E、F分别在边AB、BC上

7、,EDBC,EFAC求证:BE=CF19(8分)计算:(3.14)02|3|20(8分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.21(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,

8、市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?22(10分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k0)的图象交于A(1,a),B(3,b)两点求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求PAB的面积23(12分)如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF(1)求证:四边形BCFE是菱形;(2)若CE=4,BCF=120,求菱形BCFE的面积24已知:如图,四边形ABCD中,ADBC,AD=CD,E是对角线BD上一点,且EA=EC(1)求证:四边形ABCD是菱

9、形;(2)如果BDC=30,DE=2,EC=3,求CD的长参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可【详解】解:A、ABD=ACB,A=A,ABCADB,故此选项不合题意;B、ADB=ABC,A=A,ABCADB,故此选项不合题意;C、AB2=ADAC,A=A,ABCADB,故此选项不合题意;D、=不能判定ADBABC,故此选项符合题意故选D【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似2、A【解析

10、】在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.3、D【解析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.4、A【解析】二次函数yx22(b2)xb21的图象不经过第三象限,a10,0或抛物线与x轴的交点的横坐标均大于

11、等于0.当0时,2(b2)24(b21)0,解得b.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1x22(b2)0,2(b2)24(b21)0,无解,此种情况不存在b.5、D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为108=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答【详解】解:A、根据函数图象小亮去姥姥家所用时间为108=2小时,小亮骑自行车的平均速度为:242=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到

12、姥姥家对应的时间t=10,109.5=0.5(小时),妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为98=1小时,小亮走的路程为:112=12km,妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.6、A【解析】解:乙出发时甲行了2秒,相距8m,甲的速度为8/24m/ s100秒时乙开始休息乙的速度是500/1005m/ sa秒后甲乙相遇,a8/(54)8秒因此正确100秒时乙到达终点,甲走了4(1002)408 m,b500

13、40892 m 因此正确甲走到终点一共需耗时500/4125 s,c12521 s 因此正确终上所述,结论皆正确故选A7、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题由此即可解答.【详解】当a2,b1时,(2)212,但是21,a2,b1是假命题的反例故选A【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法8、C【解析】如图,由平行线等分线段定理(或分线段成比例定理)易得:;设过点B且与y轴平行的直线交AC于点G,则SABC=SAGB+SBCG,易得:SAED,AEDAGB且相似比=1,所以,AEDAGB,所以,

14、SAGB,又易得G为AC中点,所以,SAGB=SBGC=,从而得结论;易知,BG=DE=1,又BGCFEC,列比例式可得结论;易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以错误【详解】解:如图,OEAACC,且OA=1,OC=1,故 正确;设过点B且与y轴平行的直线交AC于点G(如图),则SABC=SAGB+SBCG,DE=1,OA=1,SAED=11=,OEAAGB,OA=AB,AE=AG,AEDAGB且相似比=1,AEDAGB,SABG=,同理得:G为AC中点,SABG=SBCG=,SABC=1,故 正确;由知:AEDAGB,BG=DE=1,BGEF,BGCFEC

15、,EF=1即OF=5,故正确;易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故错误;故选C【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力考查学生数形结合的数学思想方法9、B【解析】点,是中点点坐标在双曲线上,代入可得点在直角边上,而直线边与轴垂直点的横坐标为-6又点在双曲线点坐标为从而,故选B10、D【解析】根据线段垂直平分线性质得出AE=CE,推出A=ACE=30,代入BCE=ACB-ACE求出即可【详解】DE垂直平分AC交AB于E,AE=CE,A=ACE,A=30,AC

16、E=30,ACB=80,BCE=ACB-ACE=50,故选D【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】试题解析:由于关于x的一元二次方程的一个根是2,把x=2代入方程,得 ,解得,k2=2,k2=2当k=2时,由于二次项系数k2=2,方程不是关于x的二次方程,故k2所以k的值是2故答案为212、1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺)故

17、答案为1考点:平面展开最短路径问题13、.【解析】试题解析:连接OE、AE,点C为OA的中点,CEO=30,EOC=60,AEO为等边三角形,S扇形AOE= S阴影=S扇形AOB-S扇形COD-(S扇形AOE-SCOE)= = =14、【解析】由ABC中,点D、E分别在边AB、BC上,DEAC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案【详解】解:DEAC,DB:AB=BE:BC,DB=4,AB=6,BE=3,4:6=3:BC,解得:BC=,EC=BCBE=3=故答案为【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一

18、边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例15、0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身16、【解析】根据去括号法则和合并同类二次根式法则计算即可【详解】解:原式故答案为:【点睛】此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键三、解答题(共8题,共72分)17、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39

19、000元;(3)详见解析.【解析】试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可试题解析:(1)根据题意,用一月份A款的数量乘以:50=40(双)即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:则三月份的总销售额是:40065+50026=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A

20、款运动鞋,少进或不进B款运动鞋考点:1.折线统计图;2.条形统计图18、证明见解析【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题试题解析:EDBC,EFAC,四边形EFCD是平行四边形,DE=CF,BD平分ABC,EBD=DBC,DEBC,EDB=DBC,EBD=EDB,EB=ED,EB=CF考点:平行四边形的判定与性质19、1【解析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式 =13+43,=1【点睛】本题主要考查了实数的综合运算能力,是各地中

21、考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算20、甲建筑物的高度约为,乙建筑物的高度约为.【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案详解:如图,过点作,垂足为.则.由题意可知,.可得四边形为矩形.,.在中,.在中,. .答:甲建筑物的高度约为,乙建筑物的高度约为.点睛:本题考查解直角三角形的应用-仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般21、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30

22、套时,y最小值为2090万元【解析】(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.【详解】(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x3)万元,则,解得x=1经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a套,则乙种套房提升(80a)套,则209025a+1(80a)2096,解得48a2共3种方案,分别为:方案一:甲种套房提升48套,

23、乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套设提升两种套房所需要的费用为y万元,则y=25a+1(80a)=3a+2240,k=3,当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【点睛】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程22、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)SPAB= 1.1 【解析】(1)把点A(1,a)代入一次函数中可得

24、到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由SPAB=SABDSPBD即可求出PAB的面积.解:(1)把点A(1,a)代入一次函数y=x+4,得a=1+4,解得a=3,A(1,3),点A(1,3)代入反比例函数y=,得k=3,反比例函数的表达式y=,(2)把B(3,b)代入y=得,b=1点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,D(3,1),设

25、直线AD的解析式为y=mx+n,把A,D两点代入得,解得m=2,n=1,直线AD的解析式为y=2x+1, 令y=0,得x=,点P坐标(,0),(3)SPAB=SABDSPBD=222=2=1.1 点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23、(1)见解析;(2)见解析【解析】(1)从所给的条件可知,DE是ABC中位线,所以DEBC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形B

26、CFE是菱形(2)因为BCF=120,所以EBC=60,所以菱形的边长也为4,求出菱形的高面积就可【详解】解:(1)证明:D、E分别是AB、AC的中点,DEBC且2DE=BC又BE=2DE,EF=BE,EF=BC,EFBC四边形BCFE是平行四边形又BE=FE,四边形BCFE是菱形(2)BCF=120,EBC=60EBC是等边三角形菱形的边长为4,高为菱形的面积为4=24、(1)证明见解析;(2)CD的长为2【解析】(1)首先证得ADECDE,由全等三角形的性质可得ADE=CDE,由ADBC可得ADE=CBD,易得CDB=CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形A

27、BCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)作EFCD于F,在RtDEF中,根据30的性质和勾股定理可求出EF和DF的长,在RtCEF中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在ADE与CDE中,ADECDE(SSS),ADE=CDE,ADBC,ADE=CBD,CDE=CBD,BC=CD,AD=CD,BC=AD,四边形ABCD为平行四边形,AD=CD,四边形ABCD是菱形;(2)作EFCD于F.BDC=30,DE=2,EF=1,DF=,CE=3,CF=2,CD=2+.【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30的直角三角形的性质,勾股定理.证明AD=BC是解(1)的关键,作EFCD于F,构造直角三角形是解(2)的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁