《广东惠城区重点达标名校2023年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广东惠城区重点达标名校2023年中考冲刺卷数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx52下列图形是轴对称图形的有()A2个B3个C4个D5个3一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不
2、再放回袋中,充分搅匀后再随机摸出一球两次都摸到红球的概率是( )ABCD4若实数m满足,则下列对m值的估计正确的是()A2m1B1m0C0m1D1m25最小的正整数是()A0 B1 C1 D不存在6下列图案中,是轴对称图形的是( )ABCD7在实数,中,其中最小的实数是()ABCD8提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A13.75106 B13.75105 C1.375108 D1.3751099若0m2,则关于x的一元二次方程(x+m)(x+3m)3mx+37根的情况是()A无实数根B有两个正根
3、C有两个根,且都大于3mD有两个根,其中一根大于m10化简的结果是()ABCD二、填空题(共7小题,每小题3分,满分21分)11化简代数式(x+1+),正确的结果为_12把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为 cm13如图,在33的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_.14三人中有两人性别相同的概率是_.15百子回归图是由 1,2,3,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四 位“19 99
4、 12 20”标示澳门回归日期,最后一行中间两 位“23 50”标示澳门面积,同时它也是十阶幻方, 其每行 10 个数之和、每列 10 个数之和、每条对角线10 个数之和均相等,则这个和为_百 子 回 归16当a,b互为相反数,则代数式a2+ab2的值为_17A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地若设乙车的速度是x千米/小时,则根据题意,可列方程_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点
5、F,连接CF,(1)求证:AF=DC;(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论19(5分)已知二次函数y=a(x+m)2的顶点坐标为(1,0),且过点A(2,)(1)求这个二次函数的解析式;(2)点B(2,2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案20(8分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:仅用无刻度直尺,保留必要的画图痕迹在图1中画出一个45角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线21(10分)如
6、图,AB是O的直径,点C为O上一点,经过C作CDAB于点D,CF是O的切线,过点A作AECF于E,连接AC(1)求证:AE=AD(2)若AE=3,CD=4,求AB的长22(10分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数23(1
7、2分)如图,在四边形ABCD中,ABC90,AB3,BC4,CD10,DA5,求BD的长24(14分)如图,ABC是O的内接三角形,AB是O的直径,OFAB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且ACE+AFO=180.求证:EM是O的切线;若A=E,BC=,求阴影部分的面积.(结果保留和根号).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:一次函数y=kxb经过点(2,0),2kb
8、=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即kx1k;两边同时除以k,因为k0,因而解集是x1故选C【点睛】本题考查一次函数与一元一次不等式2、C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形据此对图中的图形进行判断解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是
9、轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意故轴对称图形有4个故选C考点:轴对称图形3、A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红(红,红)(红,红)(绿,红)(绿,绿)红(红,红)(红,红)(绿,红)(绿,红)红(红,红)(红,红)(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)所有等可能的情况数为20种,其中两次都为红球的情况有6种,故选A.4、A【解析】试题解析:,m2+2+=0,m2+2=-,方程的解可以看作是函数y=m2+2与函
10、数y=-,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y=-=-=2,62,交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-=-=4,34,交点横坐标小于-1,-2m-1故选A考点:1.二次函数的图象;2.反比例函数的图象5、B【解析】根据最小的正整数是1解答即可【详解】最小的正整数是1故选B【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答6、B【解析】根据轴对称图形的定义,逐一进行判断.【详解】A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
11、故选B.【点睛】本题考查的是轴对称图形的定义.7、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小8、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】13.75亿=1.375109.故答案选D.【点睛】本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.9、A【解析】先整理为一般形式
12、,用含m的式子表示出根的判别式,再结合已知条件判断的取值范围即可.【详解】方程整理为,方程没有实数根,故选A【点睛】本题考查了一元二次方程根的判别式,当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根10、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、2x【解析】根据分式的运算法则计算即可求解.【详解】(x+1+)= =2x.故答案为2x【点睛】本题考查了分式的混合
13、运算,熟知分式的混合运算顺序及运算法则是解答本题的关键12、1【解析】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在RtMOF中利用勾股定理求得OF的长即可【详解】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80r,MF=40,在RtOMF中,OM2+MF2=OF2,即(80r)2+402=r2,解得:r=1cm故答案为113、.【解析】找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论【详解】从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、
14、C;A、B、F两种取法,可使这三定组成等腰三角形,所画三角形时等腰三角形的概率是,故答案是:【点睛】考查的是概率公式,熟记随机事件A的概率P(A)事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键14、1【解析】分析:由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.详解:三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,三人中至少有两个人的性别是相同的,P(三人中有二人性别相同)=1.点睛:列出本题中所有的等可能结果是解题的关键.15、505【解析】根据已知得
15、:百子回归图是由1,2,3,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和10,代入求解即可【详解】1100的总和为: =5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=505010=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案16、1【解析】分析:由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.详解:a与b互为相反数,a+b=0
16、,a1+ab-1=a(a+b)-1=0-1=-1.故答案为:-1.点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.17、【解析】直接利用甲车比乙车早半小时到达目的地得出等式即可【详解】解:设乙车的速度是x千米/小时,则根据题意,可列方程:故答案为:【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键三、解答题(共7小题,满分69分)18、(1)见解析(2)见解析【解析】(1)根据AAS证AFEDBE,推出AF=BD,即可得出答案(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD
17、,根据菱形的判定推出即可【详解】解:(1)证明:AFBC, AFE=DBEE是AD的中点,AD是BC边上的中线,AE=DE,BD=CD在AFE和DBE中,AFE=DBE,FEA=BED, AE=DE,AFEDBE(AAS)AF=BDAF=DC(2)四边形ADCF是菱形,证明如下:AFBC,AF=DC,四边形ADCF是平行四边形ACAB,AD是斜边BC的中线,AD=DC平行四边形ADCF是菱形19、(1)y=(x+1)1;(1)点B(1,1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解析】(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-
18、1)即可判断;(3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可【详解】解:(1)二次函数y=a(x+m)1的顶点坐标为(1,0),m=1,二次函数y=a(x+1)1,把点A(1,)代入得a=,则抛物线的解析式为:y=(x+1)1(1)把x=1代入y=(x+1)1得y=1,所以,点B(1,1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=(x+1+m)1,把B(1,1)代入得1=(1+1+m)1,解得m=1或5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函
19、数的性质以及图象与几何变换20、(1)答案见解析;(2)答案见解析【解析】试题分析:(1)根据等腰直角三角形的性质即可解决问题(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题试题解析:(1)如图所示,ABC=45(AB、AC是小长方形的对角线)(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线考点:作图应用与设计作图21、(1)证明见解析(2) 【解析】(1)连接OC,根据垂直定义和切线性质定理证出CAECAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股
20、定理得:AC=5,由cosEAC=,cosCAB=,EAC=CAB,得=.【详解】(1)证明:连接OC,如图所示,CDAB,AECF,AEC=ADC=90,CF是圆O的切线,COCF,即ECO=90,AEOC,EAC=ACO,OA=OC,CAO=ACO,EAC=CAO,在CAE和CAD中,CAECAD(AAS),AE=AD;(2)解:连接CB,如图所示,CAECAD,AE=3,AD=AE=3,在RtACD中,AD=3,CD=4,根据勾股定理得:AC=5,在RtAEC中,cosEAC=,AB为直径,ACB=90,cosCAB=,EAC=CAB,=,即AB=【点睛】本题考核知识点:切线性质,锐角三
21、角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.22、(1)一共调查了300名学生(2)(3)体育部分所对应的圆心角的度数为48(4)1800名学生中估计最喜爱科普类书籍的学生人数为1【解析】(1)用文学的人数除以所占的百分比计算即可得解(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可(3)用体育所占的百分比乘以360,计算即可得解(4)用总人数乘以科普所占的百分比,计算即可得解【详解】解:(1)9030%=300(名),一共调查了300名学生(2)艺术的人数:30020%=60名,其它的人数:30010%=30名补全折线图如下:(3)体
22、育部分所对应的圆心角的度数为:360=48(4)1800=1(名),1800名学生中估计最喜爱科普类书籍的学生人数为123、BD2.【解析】作DMBC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出ACD是直角三角形,ACD=90,证出ACB=CDM,得出ABCCMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可【详解】作DMBC,交BC延长线于M,连接AC,如图所示:则M90,DCM+CDM90,ABC90,AB3,BC4,AC2AB2+BC2
23、25,CD10,AD ,AC2+CD2AD2,ACD是直角三角形,ACD90,ACB+DCM90,ACBCDM,ABCM90,ABCCMD,CM2AB6,DM2BC8,BMBC+CM10,BD,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出ACD是直角三角形是解决问题的关键24、(1)详见解析;(2);【解析】(1)连接OC,根据垂直的定义得到AOF=90,根据三角形的内角和得到ACE=90+A,根据等腰三角形的性质得到OCE=90,得到OCCE,于是得到结论;(2)根据圆周角定理得到ACB=90,推出ACO=B
24、CE,得到BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论【详解】:(1)连接OC,OFAB,AOF=90,A+AFO+90=180,ACE+AFO=180,ACE=90+A,OA=OC,A=ACO,ACE=90+ACO=ACO+OCE,OCE=90,OCCE,EM是O的切线;(2)AB是O的直径,ACB=90,ACO+BCO=BCE+BCO=90,ACO=BCE,A=E,A=ACO=BCE=E,ABC=BCO+E=2A,A=30,BOC=60,BOC是等边三角形,OB=BC=,阴影部分的面积=,【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键