《广西防城岗市防城区达标名校2023年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广西防城岗市防城区达标名校2023年中考冲刺卷数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为()A1915.15108B19.1551010C1.91551011D1.915510122如图,已知ABCD,D
2、EAF,垂足为E,若CAB=50,则D的度数为()A30B40C50D603sin60的值为()ABCD4下列计算正确的是()AB(a2)3=a6CD6a22a=12a35如图,在O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:ABCD; AOB=4ACD;弧AD=弧BD;PO=PD,其中正确的个数是()A4B1C2D36某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同设现在每天生产x台机器,根据题意可得方程为()ABCD7小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:ab,xy,x+y,a+b,x2y
3、2,a2b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2y2)a2(x2y2)b2因式分解,结果呈现的密码信息可能是( )A我爱美B宜晶游C爱我宜昌D美我宜昌8小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( )A众数是6吨B平均数是5吨C中位数是5吨D方差是9已知,则的值为ABCD10计算(x2)(x+5)的结果是Ax2+3x+7Bx2+3x+10Cx2+3x10Dx23x10二、填空题(本大题共6个小题,每小题3分,共18分)11已知点,在二次函数的图象上,若,则_(填“”“”“”)12已知关于x的二次函数yx22x2,当axa2时,函数有最大值1,则a的值
4、为_13关于x的方程kx2(2k+1)x+k+2=0有实数根,则k的取值范围是_14已知:,则的值是_15若正多边形的一个外角是45,则该正多边形的边数是_.16若关于x的一元二次方程(a1)x2x+1=0有实数根,则a的取值范围为_三、解答题(共8题,共72分)17(8分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、表示;田赛项目:跳远,跳高分别用、表示该同学从5个项目中任选一个,恰好是田赛项目的概率为_;该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率18(8分)如图,AB为O的直径,
5、点C,D在O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E(1)求证:EF是O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长19(8分)如图:PCD是等腰直角三角形,DPC=90,APB=135求证:(1)PACBPD;(2)若AC=3,BD=1,求CD的长20(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有论语、大学、中庸(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各
6、自抽取的内容进行诵读比赛小礼诵读论语的概率是 ;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率21(8分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.22(10分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C(1)求证:ACD=B;(2)如图2,BDC的平分线分别交AC,BC于点E,F,求CEF的度数23(12分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(t,y1)和(t,y2)(其中t为常数且t0),将xt
7、的部分沿直线yy1翻折,翻折后的图象记为G1;将xt的部分沿直线yy2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G例如:如图,当t1时,原函数yx,图象G所对应的函数关系式为y(1)当t时,原函数为yx+1,图象G与坐标轴的交点坐标是 (2)当t时,原函数为yx22x图象G所对应的函数值y随x的增大而减小时,x的取值范围是 图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由(3)对应函数yx22nx+n23(n为常数)n1时,若图象G与直线y2恰好有两个交点,求t的取值范围当t2时,若图象G在n22xn21上的函数值y随x的增大而减小,直
8、接写出n的取值范围24计算:2-1+20160-3tan30+|-|参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝对值1时,y随x的增大而增大.若x1x21时,y1y2.故答案为12、1或1【解析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当axa+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论【详解】解:当y=1时,x2-2x-2=1,解得:x1=-1,x2=3,当axa+2时,函数
9、有最大值1,a=-1或a+2=3,即a=1故答案为-1或1【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键13、k【解析】分k=1及k1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k1时,由1即可得出关于k的一元一次不等式,解之即可得出k的取值范围综上此题得解【详解】当k=1时,原方程为-x+2=1,解得:x=2,k=1符合题意;当k1时,有=-(2k+1)2-4k(k+2)1,解得:k且k1综上:k的取值范围是k故答案为:k【点睛】本题考查了根的判别式以及一元二次方程的定义,分
10、k=1及k1两种情况考虑是解题的关键14、 【解析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k0),故:,故答案:.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.15、1;【解析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045可求得边数【详解】多边形外角和是360度,正多边形的一个外角是45,36045=1即该正多边形的边数是1【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等)16、a且a1【解析】根据一元二次方程有实数根的条件列出关
11、于a的不等式组,求出a的取值范围即可【详解】由题意得:0,即(-1)2-4(a-1)10,解得a,又a-10,a且a1.故答案为a且a1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键三、解答题(共8题,共72分)17、 (1);(2).【解析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案【详解】(1)5个项目中田赛项目有2个,该同学从5个项目中任选一个,恰好是田赛项目的概率为:故答案为;(2)
12、画树状图得:共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,恰好是一个田赛项目和一个径赛项目的概率为:【点睛】本题考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比18、(1)证明见解析(2)【解析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OCAE,得到OCEF,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明AECACB,根据相似三角形的性质列出比例式,计算即可【详解】(1)证明:连接OC,OA=OC
13、,OCA=BAC,点C是的中点,EAC=BAC,EAC=OCA,OCAE,AEEF,OCEF,即EF是O的切线;(2)解:AB为O的直径,BCA=90,AC=4,EAC=BAC,AEC=ACB=90,AECACB,AE=【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键19、(1)见解析;(2).【解析】(1)由PCD是等腰直角三角形,DPC=90,APB=135,可得PAB=PBD,BPD=PAC,从而即可证明;(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解【详解】证明:(1)PCD是等腰直
14、角三角形,DPC=90,APB=135,APC+BPD=45,又PAB+PBA=45,PBA+PBD=45,PAB=PBD,BPD=PAC,PCA=PDB,PACBPD;(2),PC=PD,AC=3,BD=1PC=PD=,CD=【点睛】本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法20、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可【详解】(1)诵读材料有论语,三字经,弟子规三种,小明诵读论语的概率=,(2)列表得:小明小亮ABCA(A,A)(A,B)(A,C)B
15、(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种 所以小明和小亮诵读两个不同材料的概率=【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点21、(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论详解:(1)为的中点, 反比例函数图象过点,设图象经过、两点的一次函数表达式为:,解得,(2), ,
16、设点坐标为,则点坐标为 两点在图象上,解得:,点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式解题的关键是求出点A、E、F的坐标22、(1)详见解析;(2)CEF=45【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出DCOACB90,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明CEF=CFE即可求解试题解析:(1)证明:如图1中,连接OCOAOC,12,CD是O切线,OCCD,DCO90,3290,AB是直径,1B90,3B(2)解:CEFECDCDE,CFEBFDB,CDEFDB,ECDB,CEFCFE,ECF90,CEFCFE45
17、23、(1)(2,0);(2)x1或x;图象G所对应的函数有最大值为;(3);n或n【解析】(1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;(2)画出函数草图,求出翻转点和函数顶点的坐标,根据图象的增减性可求出y随x的增大而减小时,x的取值范围,根据图象很容易计算出函数最大值;(3)将n1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标
18、(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.【详解】(1)当x时,y,当x时,翻折后函数的表达式为:yx+b,将点(,)坐标代入上式并解得:翻折后函数的表达式为:yx+2,当y0时,x2,即函数与x轴交点坐标为:(2,0);同理沿x翻折后当时函数的表达式为:yx,函数与x轴交点坐标为:(0,0),因为所以舍去.故答案为:(2,0);(2)当t时,由函数为yx22x构建的新函数G的图象,如下图所示:点A、B分别是t、t的两个翻折点,点C是抛物线原顶点,则点A、B、C的横坐标分别为、1、,函数值y随x的增大而减小时,x1或x,故答案为:x1或x;函数在点A处取得最大值
19、,x,y()22(),答:图象G所对应的函数有最大值为;(3)n1时,yx2+2x2,参考(2)中的图象知:当y2时,yx2+2x22,解得:x1,若图象G与直线y2恰好有两个交点,则t1且-t,所以;函数的对称轴为:xn,令yx22nx+n230,则xn,当t2时,点A、B、C的横坐标分别为:2,n,2,当xn在y轴左侧时,(n0),此时原函数与x轴的交点坐标(n+,0)在x2的左侧,如下图所示,则函数在AB段和点C右侧,故:2xn,即:在2n22xn21n,解得:n;当xn在y轴右侧时,(n0),同理可得:n;综上:n或n【点睛】在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)需注意图象G与直线y2恰好有两个交点,多于2个交点的要排除;根据草图和增减性,列出不等式,求解即可.24、 【解析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;【详解】原式= = =【点睛】此题考查实数的混合运算此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算