《广东省佛山市六峰中学2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省佛山市六峰中学2022-2023学年中考一模数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,将ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若DOF142,则C的度数为()A38B39C42D482下列图形中,既是中心对称图形,又是轴对称图形的是( )ABCD3安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A4.67107B4.67106C46.7105D0.4671074若一组数据1、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )A0B2.5C3 D55如图,AD是O的弦,过点O作AD的垂线,垂足为点C,交O于点F,过点A作O的切线,交
3、OF的延长线于点E若CO=1,AD=2,则图中阴影部分的面积为A4-B2-C4-D2-6下列命题是真命题的是()A一组对边平行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C两组对边分别相等的四边形是平行四边形D平行四边形既是中心对称图形,又是轴对称图形7计算tan30的值等于( )A B C D8反比例函数y=的图象与直线y=x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )At Bt Ct Dt9共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以
4、内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A平均数B中位数C众数D方差10将一把直尺与一块三角板如图所示放置,若则2的度数为( )A50B110C130D150二、填空题(本大题共6个小题,每小题3分,共18分)11如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,MAD=45,MBC=30,则警示牌的高CD为_米(结果保留根号)12下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2
5、(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_13下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_枚棋子14将6本相同厚度的书叠起来,它们的高度是9厘米如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_本15如果抛物线y=(m1)x2的开口向上,那么m的取值范围是_16如图,ABC中,AD是中线,BC=8,B=DAC,则线段 的长为_三、解答题(共8题,共72分)17(8分)如图,ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求ABC的面积1
6、8(8分)如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t用含t的代数式表示:AP= ,AQ= 当以A,P,Q为顶点的三角形与ABC相似时,求运动时间是多少?19(8分)如图,已知A(4,),B(1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,ACx轴于点C,BDy轴于点D(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若PCA和PDB面积相等,求点P坐标20(8分)如图,ABCD的对角线AC,BD相交于
7、点OE,F是AC上的两点,并且AE=CF,连接DE,BF(1)求证:DOEBOF;(2)若BD=EF,连接DE,BF判断四边形EBFD的形状,并说明理由21(8分)九章算术中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?请解答上述问题.22(10分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据如图是根据这组数据绘制的统计图,图中从左到右各长
8、方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人孔明同学调查的这组学生共有_人;这组数据的众数是_元,中位数是_元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?23(12分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24如图,AB为O直径,C为O上一点,点D是的中点,DEAC于E,DFAB于F(1)判断DE与O的位置关系,并证明你的结论;(2)若OF
9、=4,求AC的长度参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:根据翻折的性质得出A=DOE,B=FOE,进而得出DOF=A+B,利用三角形内角和解答即可详解:将ABC沿DE,EF翻折,A=DOE,B=FOE,DOF=DOE+EOF=A+B=142,C=180AB=180142=38 故选A点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型2、C【解析】根据中心对称图形和轴对称图形对各选项分析判断即可得解【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对
10、称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合3、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】将4670000用科学记数法表示为4.67106,故选B.【点睛】本题考查了科学记数法表示较大的数,解题的关键是掌握科学记数法的概念进行解答.4、C【解析】解:这组数据1、a、2、1、4的平均数为:
11、(1+a+2+1+4)5=(a+10)5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,符合排列顺序(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,不符合排列顺序(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=a,解得a=2.5,符合排
12、列顺序(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5,不符合排列顺序(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,a不可能是1故选C【点睛】本题考查中位数;算术平均数5、B【解析】由S阴影=SOAE-S扇形OAF,分别求出SOAE、S扇形OAF即可;【详解】连接OA,ODOFAD,AC=CD=,在RtOAC中
13、,由tanAOC=知,AOC=60,则DOA=120,OA=2,RtOAE中,AOE=60,OA=2AE=2,S阴影=SOAE-S扇形OAF=22-.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可6、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对边分别相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断【详解】A、一组对边平行
14、,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法7、C【解析】tan30= 故选C8、B【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x22x+16t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解【详解】由题意可得:x
15、+2=,所以x22x+16t=0,两函数图象有两个交点,且两交点横坐标的积为负数, 解不等式组,得t故选:B点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.9、B【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而
16、在一定程度上提高了中位数对分布数列的代表性。10、C【解析】如图,根据长方形的性质得出EFGH,推出FCD=2,代入FCD=1+A求出即可【详解】EFGH,FCD=2,FCD=1+A,1=40,A=90,2=FCD=130,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、一4【解析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为MAD=45, AM=4,所以MD=4,因为AB=8,所以MB=12,因为MBC=30,所以CM=MBtan30=4.
17、所以CD=4-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.12、甲【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】 ,从甲和丙中选择一人参加比赛, ,选择甲参赛,故答案为甲【点睛】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立13、4n+2【解析】第1个有:6=41+2;第2个有:10=42+2;第3个有:14=43+2;第1个有: 4n+2;故答案为4n+214、1【解析】因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论【详解】设这些书有x本,由题意得,解
18、得:x=1,答:这些书有1本故答案为:1【点睛】本题考查了比例的性质,正确的列出比例式是解题的关键15、m2【解析】试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m22解:因为抛物线y=(m2)x2的开口向上,所以m22,即m2,故m的取值范围是m2考点:二次函数的性质16、【解析】已知BC=8, AD是中线,可得CD=4, 在CBA和CAD中, 由B=DAC,C=C, 可判定CBACAD,根据相似三角形的性质可得 , 即可得AC2=CDBC=48=32,解得AC=4. 三、解答题(共8题,共72分)17、3【解析】试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的
19、逆定理求证ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案试题解析:BD3+AD3=63+83=303=AB3,ABD是直角三角形,ADBC,在RtACD中,CD=,SABC=BCAD=(BD+CD)AD=338=3,因此ABC的面积为3答:ABC的面积是3考点:3勾股定理的逆定理;3勾股定理18、(1)AP=2t,AQ=163t;(2)运动时间为秒或1秒【解析】(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论(1)当APQABC时;(2)当APQACB时利用相似三角形的性质求解即可【详解】(1)AP=2t,AQ=163t(2)
20、PAQ=BAC,当时,APQABC,即,解得 当时,APQACB,即,解得t=1运动时间为秒或1秒【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.19、(1)m=2;y=x+;(2)P点坐标是(,)【解析】(1)利用待定系数法求一次函数和反比例函数的解析式;(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标【详解】解:(1)反比例函数的图象过点 点B(1,m)也在该反比例函数的图象上,1m=2,m=2;设一次函数的解析式为y=kx+b,由y=kx+b的图象过点A,B(1,2),则 解得: 一次函数的解析式为
21、 (2)连接PC、PD,如图,设 PCA和PDB面积相等, 解得: P点坐标是 【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.20、(2)证明见解析;(2)四边形EBFD是矩形理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,AE=CF,OE=OF,在DEO和BOF中,DOEBOF(2)结论:四边形EBFD是矩形理由:OD=OB,OE=OF,四边形EBFD是平行
22、四边形,BD=EF,四边形EBFD是矩形点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型21、甲有钱,乙有钱.【解析】设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可【详解】解:设甲有钱,乙有钱. 由题意得: ,解方程组得: ,答:甲有钱,乙有钱.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键22、(1)60;(2)20,20;(3)38000【解析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元
23、、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x+10x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,3x+4x+5x+10x+8x=30x=302=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,120出现次数最多,众数为20元;共有60
24、个数据,第30个和第31个数据落在第四组内,中位数为20元;(3)2000=38000(元),估算全校学生共捐款38000元【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来也考查了样本估计总体、中位数与众数23、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确
25、定获利最多时的方案试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100x)盏,根据题意得,30x+50(100x)=3500,解得x=75,所以,10075=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(4530)x+(7050)(100x),=15x+200020x,=5x+2000,B型台灯的进货数量不超过A型台灯数量的3倍,100x3x,x25,k=50,x=25时,y取得最大值,为525+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元考点:1一元一次方程的应用;2一次函数的应用24、(1)DE与O相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE与O相切证明:连接OD、AD,点D是的中点,=,DAO=DAC,OA=OD,DAO=ODA,DAC=ODA,ODAE,DEAC,DEOD,DE与O相切(2) 连接BC,根据ODF与ABC相似,求得AC的长AC=8