《2022-2023学年广东省佛山市高明区中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省佛山市高明区中考二模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果下面有三个推断:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618
2、;若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1其中合理的是()ABCD2九章算术是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )ABCD3把多项式ax32ax2+ax分解因式,结果正确的是()Aax(x22x)Bax2(x2)Cax(x+1)(x1)Dax(x1)24二次函数(a0)的图象如图
3、所示,则下列命题中正确的是()Aa bcB一次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c05若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y图象上的点,并且y10y2y3,则下列各式中正确的是()Ax1x2x3Bx1x3x2Cx2x1x3Dx2x3x16在a24a4的空格中,任意填上“+”或“”,在所有得到的代数式中,能构成完全平方式的概率是( )A1 B C D7将不等式组的解集在数轴上表示,下列表示中正确的是( )ABCD8如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四
4、边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD9如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是( )ABCD10已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程x2bxc=0在1x3的范围内有两个相等的实数根,则c的取值范围是( )Ac=4 B5c4 C5c3或c=4 D5c3或c=4二、填空题(共7小题,每小题3分,满分21分)11如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是_平方米12如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容
5、易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_13如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足SPAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为_14同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 15的绝对值是_16为了求1+2+22+23+22016+22017的值,可令S1+2+22+23+22016+22017,则2S2+22+23+24+22017+22018,因此2SS220181,所以1+22+23+22017220181请你仿照以上方法计算1+5+52+53+52017的值是_17正
6、多边形的一个外角是60,边长是2,则这个正多边形的面积为_ .三、解答题(共7小题,满分69分)18(10分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.19(5分)某校有3000名学生为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDEF上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计
7、图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有_人,其中选择B类的人数有_人在扇形统计图中,求E类对应的扇形圆心角的度数,并补全条形统计图若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数20(8分)如图,AB是O的直径, O过BC的中点D,DEAC求证: BDACED21(10分)阅读与应用:阅读1:a、b为实数,且a0,b0,因为,所以,从而(当ab时取等号)阅读2:函数(常数m0,x0),由阅读1结论可知: ,所以当即时,函数的最小值为阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长
8、为x,则另一边长为,周长为,求当x_时,周长的最小值为_问题2:已知函数y1x1(x1)与函数y2x22x17(x1),当x_时, 的最小值为_问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用其中,其他费用与学生人数的平方成正比,比例系数为0.1当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入支出总费用学生人数)22(10分)计算:+821(+1)0+2sin6023(12分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知
9、这种干果销售量y(千克)与每千克降价x(元)(0x20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?24(14分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计
10、图;(3)“自行乘车”对应扇形的圆心角的度数是度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;由图可知频数稳定在了0.618,所以估计频率为0.618,正确;.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.2、D【解析】由5头牛、2只羊,值金10两可得:5x+2y=10,
11、由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质3、D【解析】先提取公因式ax,再根据完全平方公式把x22x+1继续分解即可.【详解】原式=ax(x22x+1)=ax(x1)2,故选D【点睛】本题考查了因式分解
12、,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.4、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出=1,故b0,b=2a,则bac,故此选项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2
13、b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值5、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y10y2y3判断出三点所在的象限,故可得出结论【详解】解:反比例函数y中k10,此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,y10y2y3,点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,x2x3x1故选:D【点睛】本题考查的是反比例函数图象上点的坐
14、标特点,先根据题意判断出函数图象所在的象限是解答此题的关键6、B【解析】试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是故选B考点:1概率公式;2完全平方式7、B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可解:不等式可化为:,即在数轴上可表示为故选B“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示8、
15、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90,四边形OBGM是矩形,OM=BG=BC=,HM=OHO
16、M=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.9、B【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称从物体的前面向后面投射所得的视图称主视图(正视图)能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图能反映物体的左面形状故选B考点:三视图10、D【解析】解:由对称轴x=2可知:b=4,抛物线y=x24x+c,令x=1时,y=c+5,x=3时,y=c3,关于x的一元二次方程x2bxc=0在1x3的范围有实数根,
17、当=0时,即c=4,此时x=2,满足题意当0时,(c+5)(c3)0,5c3,当c=5时,此时方程为:x2+4x+5=0,解得:x=1或x=5不满足题意,当c=3时,此时方程为:x2+4x3=0,解得:x=1或x=3此时满足题意,故5c3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题分析:根据题意可知小羊的最大活动区域为:半径为5,圆心角度数为90的扇形和半径为1,圆心角为60的扇形,则点睛:本题主要考查的就是扇形的面积计算公式,属于简单题型本题要特别注意的就是
18、在拐角的位置时所构成的扇形的圆心角度数和半径,能够画出图形是解决这个问题的关键在求扇形的面积时,我们一定要将圆心角代入进行计算,如果题目中出现的是圆周角,则我们需要求出圆心角的度数,然后再进行计算12、1【解析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在RtABC中,由勾股定理:x2=(8-x)2+22,解得:x=,4x=1,即菱形的最大周长为1cm故答案是:1【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程13、4【解析】分析:首先由SPAB=S矩形ABCD,得出动点P在与AB平行且
19、与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值详解:设ABP中AB边上的高是hSPAB=S矩形ABCD,ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离在RtABE中,AB=4,AE=2+2=4,BE=,即PA+PB的最小值为4故答案为4点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质得出动点P所在的位置是解题的
20、关键14、【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,两个骰子的点数相同的有6种情况,两个骰子的点数相同的概率为:=故答案为考点:列表法
21、与树状图法15、 【解析】绝对值是指一个数在数轴上所对应点到原点的距离,用“|”来表示|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】的绝对值是|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.16、【解析】根据上面的方法,可以令S=1+5+52+53+52017,则5S=5+52+53+52012+52018,再相减算出S的值即可.【详解】解:令S1+5+52+53+52017,则5S5+52+53+52012+52018,5SS1+52018,4S520181,则S,故答案为:【点睛】此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所
22、以要用5S来达到抵消的目的.17、6【解析】多边形的外角和等于360,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解【详解】正多边形的边数是:36060=6.正六边形的边长为2cm,由于正六边形可分成六个全等的等边三角形,且等边三角形的边长与正六边形的边长相等,所以正六边形的面积.故答案是:.【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.三、解答题(共7小题,满分69分)18、今年妹妹6岁,哥哥10岁【解析】试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一
23、次方程组,解之即可得出结论试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得: 解得: 答:今年妹妹6岁,哥哥10岁考点:二元一次方程组的应用19、 (1)450、63; 36,图见解析; (3)2460 人【解析】(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.(2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;(3)由总人数乘以“绿色出行”的百分比,即可得到结果【详解】(1) 参与本次问卷调查的学生共有:(人);选择类的人数有: 故答案
24、为450、63;(2)类所占的百分比为: 类对应的扇形圆心角的度数为: 选择类的人数为:(人).补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为3000(1-14%-4%)=2460 人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、证明见解析.【解析】不难看出BDA和CED都是直角三角形,证明BDACED,只需要另外找一对角相等即可,由于AD是ABC的中线,又可证ADBC,即AD为BC边的中垂线,从而得到B=C,即可证相似【详解】
25、AB是O直径,ADBC,又BD=CD,AB=AC,B=C,又ADB=DEC=90,BDACED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用21、问题1: 2 8 问题2: 3 8 问题3:设学校学生人数为x人,生均投入为y元,依题意得: ,因为x0,所以,当即x=800时,y取最小值2答:当学校学生人数为800人时,该校每天生均投入最低,最低费用是2元. 【解析】试题分析:问题1:当 时,周长有最小值,求x的值和周长最小值;问题2:变形,由当x+1= 时, 的最小值,求出x值和的最小值;问题3:设学校学生人数为x人,生均投入为y元,根据生均投入=支
26、出总费用学生人数,列出关系式,根据前两题解法,从而求解试题解析:问题1:当 ( x0)时,周长有最小值,x=2,当x=2时,有最小值为=3即当x=2时,周长的最小值为23=8;问题2:y1x1(x1)与函数y2x22x17(x1),当x+1= (x1)时, 的最小值,x=3,x=3时, 有最小值为3+38,即当x=3时, 的最小值为8;问题3:设学校学生人数为x人,则生均投入y元,依题意得,因为x0,所以,当即x=800时,y取最小值2.答:当学校学生人数为800时,该校每天生均投入最低,最低费用是2元22、6+【解析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算【详解】解:原
27、式=+81+2=3+41+=6+【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍23、 (1)y10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元【解析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量每千克利润总利润列出方程求解即可;(3)根据销售量每千克利润总利润列出函数解析式求解即可【详解】(1)设y与x之间的函数关系式为:ykx+b,把(2,120)和(
28、4,140)代入得,解得:,y与x之间的函数关系式为:y10x+100;(2)根据题意得,(6040x)(10x+100)2090,解得:x1或x9,为了让顾客得到更大的实惠,x9,答:这种干果每千克应降价9元;(3)该干果每千克降价x元,商贸公司获得利润是w元,根据题意得,w(6040x)(10x+100)10x2+100x+2000,w10(x5)2+2250,a=-10,当x5时,故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识24、(1)本次抽查的学生人数是
29、120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人【解析】(1)本次抽查的学生人数:1815%120(人);(2)A:结伴步行人数12042301830(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360126;(4)估计该校“家人接送”上学的学生约有:200025%500(人)【详解】解:(1)本次抽查的学生人数:1815%120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数12042301830(人),补全条形统计图如下: “结伴步行”所占的百分比为100%=25%;“自行乘车”所占的百分比为100%=35%,“自行乘车”在扇形统计图中占的度数为36035%=126,补全扇形统计图,如图所示;(3)“自行乘车”对应扇形的圆心角的度数360126,故答案为126;(4)估计该校“家人接送”上学的学生约有:200025%500(人),答:该校“家人接送”上学的学生约有500人【点睛】本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键