《惠安广海中学2023年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《惠安广海中学2023年十校联考最后数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A2011年我国的核电发电量占总发电量的比值约为1.5%B2006年我国的总发电量约为25000亿千瓦时C2013年我国的核电发电量占总发电量的比值是2006年的2倍D我国的核电发电量从2008年开始突破100
2、0亿千瓦时2某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A4.5cm2B3cm2C4cm2D3cm23图(1)是一个长为2m,宽为2n(mn)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A2mnB(m+n)2C(m-n)2Dm2-n24如图,函数ykxb(k0)与y (m0)的图象交于点A(2,3),B(6,1),则不等式kxb的解集为()ABCD5一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20的方向行60海里到达点M处,同一时刻渔
3、船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则NOF的度数为( )A50B60C70D806下列图案是轴对称图形的是()ABCD7如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )AkBk且CkDk且8如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D789某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A152元B156元C160元D190元10如图,在矩形纸片ABCD中,已知AB,BC1,点E在边CD上
4、移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CEAB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)DCF=BCD,(2)EF=CF;(3)SBEC=2SCEF;(4)DFE=3AEF12在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为,那么角的余弦值是_13如图,扇形的半径为,圆心
5、角为120,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 _ .14观察下列各等式:根据以上规律可知第11行左起第一个数是_15点A(1,2),B(n,2)都在抛物线y=x24x+m上,则n=_16已知,在同一平面内,ABC50,ADBC,BAD的平分线交直线BC于点E,那么AEB的度数为_三、解答题(共8题,共72分)17(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”比赛项目为:A唐诗;B宋词;C论语;D三字经比赛形式分“单人组”和“双人组”(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”
6、比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明18(8分)已知,斜边,将绕点顺时针旋转,如图1,连接(1)填空:;(2)如图1,连接,作,垂足为,求的长度;(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?19(8分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F(1)求证:ADEBFE;(
7、2)若DF平分ADC,连接CE,试判断CE和DF的位置关系,并说明理由20(8分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标21(8分)九章算术中有这样一道题,原文如下:今有甲乙
8、二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?请解答上述问题.22(10分)先化简,再求值:,其中.23(12分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,求末端操作器节点到地面直线的距离.(结果保留根号)24如图,抛物线y=x2x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C(1)求点A,点B的坐标;(2)P为第二象
9、限抛物线上的一个动点,求ACP面积的最大值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由折线统计图和条形统计图对各选项逐一判断即可得【详解】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为5002.0%25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关
10、键条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况2、A【解析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长母线长2求出即可【详解】圆锥的轴截面是一个边长为3cm的等边三角形,底面半径1.5cm,底面周长3cm,圆锥的侧面积334.5cm2,故选A【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长母线长2得出3、C【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1又原矩形的面积为4mn,中间空的部分的面积=(m+n)1-4mn=(m-n)1故选C4、B【解析】根据函数的图象和交点坐标即可求得结果【详解
11、】解:不等式kx+b 的解集为:-6x0或x2,故选B【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用5、C【解析】解:OM=60海里,ON=80海里,MN=100海里,OM2+ON2=MN2,MON=90,EOM=20,NOF=1802090=70故选C【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键6、C【解析】解:A此图形不是轴对称图形,不合题意;B此图形不是轴对称图形,不合题意;C此图形是轴对称图形,符合题意;D此图形不是轴对称图形,不合题意故选C7、B【解析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1
12、)二次项系数不为零;(2)在有两个实数根下必须满足=b2-4ac1【详解】由题意知,k1,方程有两个不相等的实数根,所以1,=b2-4ac=(2k+1)2-4k2=4k+11因此可求得k且k1故选B【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.8、C【解析】分析:由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案详解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(1
13、80AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选C点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质9、C【解析】【分析】设进价为x元,依题意得2400.8-x=20x,解方程可得.【详解】设进价为x元,依题意得2400.8-x=20x解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.10、D【解析】点F的运动路径的长为弧FF的长,求出圆心角、半径即可解决问题【详解】如图,点F的运动路径的长为弧FF的长,在RtABC中,tanBAC=,BAC=30,CAF=BAC=30,
14、BAF=60,FAF=120,弧FF的长=故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,DCF=BCD,故此选项正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AE
15、C=90,AEC=ECD=90,FM=EF,FC=FM,故正确;EF=FM,SEFC=SCFM,MCBE,SBEC2SEFC故SBEC=2SCEF错误;设FEC=x,则FCE=x,DCF=DFC=90-x,EFC=180-2x,EFD=90-x+180-2x=270-3x,AEF=90-x,DFE=3AEF,故此选项正确考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线12、【解析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【详解】点A坐标为(3,4),OA=5,cos=,故答案为【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三
16、角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.13、4cm【解析】求出扇形的弧长,除以2即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可【详解】扇形的弧长=4,圆锥的底面半径为42=2,故圆锥的高为:=4,故答案为4cm【点睛】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长14、-1【解析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9.第n行=n2,第11行=112=121,又左起第一个数比右侧的数大一,第11行左起第一个数是-1.【点睛】本题
17、是一道规律题,属于简单题,认真审题找到规律是解题关键.15、1【解析】根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值【详解】:点A(1,2),B(n,2)都在抛物线y=x2-4x+m上, ,解得 或 ,点B为(1,2)或(1,2),点A(1,2),点B只能为(1,2),故n的值为1,故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解16、65或25【解析】首先根据角平分线的定义得出EAD=EAB,再分情况讨论计算即可【详解】解:分情况讨论:(1)AE平分BAD,EAD=EAB,ADBC,EAD=AEB,BAD=
18、AEB,ABC50,AEB= (180-50)=65(2)AE平分BAD,EAD=EAB= ,ADBC,AEB=DAE=,DAB=ABC,ABC50,AEB= 50=25故答案为:65或25.【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型三、解答题(共8题,共72分)17、 (1) ;(2).【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种
19、等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=18、(1)1;(2);(3)x时,y有最大值,最大值【解析】(1)只要证明OBC是等边三角形即可;(2)求出AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:当0x时,M在OC上运动,N在OB上运动,此时过点N作NEOC且交OC于点E当x4时,M在BC上运动,N在OB上运动当4x4.8时,M、N都在BC上运动,作OGBC于G【详解】(1)由旋转性质可知:OBOC,BOC1,OBC是等边三角形,OBC1故答案为1(2)如图1中OB4,ABO3
20、0,OAOB2,ABOA2,SAOCOAAB22BOC是等边三角形,OBC1,ABCABO+OBC90,AC,OP(3)当0x时,M在OC上运动,N在OB上运动,此时过点N作NEOC且交OC于点E则NEONsin1x,SOMNOMNE1.5xx,yx2,x时,y有最大值,最大值当x4时,M在BC上运动,N在OB上运动作MHOB于H则BM81.5x,MHBMsin1(81.5x),yONMHx2+2x当x时,y取最大值,y,当4x4.8时,M、N都在BC上运动,作OGBC于GMN122.5x,OGAB2,yMNOG12x,当x4时,y有最大值,最大值2综上所述:y有最大值,最大值为【点睛】本题考
21、查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题19、(1)见解析;(1)见解析【解析】(1)由全等三角形的判定定理AAS证得结论(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,1=1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CEDF【详解】解:(1)证明:如图,四边形ABCD是平行四边形,ADBC又点F在CB的延长线上,ADCF1=1点E是AB边的中点,AE=BE,在ADE与BFE中,ADEBFE(AAS)(1)CEDF理由如下:如图,连接CE,
22、由(1)知,ADEBFE,DE=FE,即点E是DF的中点,1=1DF平分ADC,1=22=1CD=CFCEDF20、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF
23、、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4
24、(2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,O
25、G=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBE
26、OBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=,DE=BE,t=t2)=2t4 解得:t=4,OP=4,PE=64=2,点E的坐标为(4,2) 综上所述:当以B、D、E为顶点的三角
27、形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性21、甲有钱,乙有钱.【解析】设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可【详解】解:设甲有钱,乙有钱. 由题意得: ,解方程组得: ,答:甲有钱,乙有钱.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键22、-1,-9.【解析】先去括号,再合并
28、同类项;最后把x=-2代入即可【详解】原式,当x=-2时,原式-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值23、()cm.【解析】作BGCD,垂足为G,BHAF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BGCD,垂足为G,BHAF,垂足为H,在中,BCD=60,BC=60cm,在中,BAF=45,AB=60cm,D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.24、 (1) A(4,0),B(2,0);(2)AC
29、P最大面积是4.【解析】(1)令y=0,得到关于x 的一元二次方程x2x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PDAO交AC于D,设P(t,t2t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以SACP=PDOA=PD4=2PD,可得SACP关于t 的函数关系式,继而可求出ACP面积的最大值【详解】(1)解:设y=0,则0=x2x+4x1=4,x2=2A(4,0),B(2,0)(2)作PDAO交AC于D设AC解析式y=kx+b解得:AC解析式为y=x+4.设P(t,t2t+4)则D(t,t+4)PD=(t2t+4)(t+4)=t22t=(t+2)2+2SACP=PD4=(t+2)2+4当t=2时,ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.