《广东省茂名电白区七校联考2023届中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省茂名电白区七校联考2023届中考数学仿真试卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1若x2y+10,则2x4y8等于()A1B4C8D162如图,已知RtABC中,BAC=90,将ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交B
2、C于F,则CFD的度数为()A80B90C100D1203如图,二次函数yax2bxc(a0)的图象经过点A,B,C现有下面四个推断:抛物线开口向下;当x=2时,y取最大值;当m ax2bxc时,x的取值范围是4x0;其中推断正确的是 ( )ABCD4如图,等腰直角三角形位于第一象限,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( )ABCD5据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( )A55106B0.55108C5.5106D5.51076据国土资源部数
3、据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.91010B3.9109C0.391011D391097如图,在四边形ABCD中,ADBC,ABC+DCB=90,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1若S2=48,S1=9,则S1的值为()A18B12C9D18如图,BC是O的直径,A是O上的一点,B58,则OAC的度数是( )A32B30C38D589计算3(5)的结果等于()A15 B8 C8 D1510九章算术是我国古代第一部自成体系的
4、数学专著,代表了东方数学的最高成就它的算法体系至今仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A13寸B20寸C26寸D28寸二、填空题(本大题共6个小题,每小题3分,共18分)11已知扇形的弧长为,圆心角为45,则扇形半径为_12要使分式有意义,则x的取值范围为_13在计算器上,按照下面如图的程序进行操作:如表中的x与
5、y分别是输入的6个数及相应的计算结果:上面操作程序中所按的第三个键和第四个键分别是_、_x321012y53113514如图,在ABC中,AD、BE分别是BC、AC两边中线,则=_15如图,直线lx轴于点P,且与反比例函数y1(x0)及y2(x0)的图象分别交于点A,B,连接OA,OB,已知OAB的面积为2,则k1k2_.16如图,的半径为,点,都在上,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_(结果保留)三、解答题(共8题,共72分)17(8分)计算:(1)(2)2|4|+316+20;(2)18(8分)如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以
6、原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.19(8分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿)因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?20(8分)先化简,再求值:(a)(1+),其中a是不等式 a的整数解21(8分)在边
7、长为1的55的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积22(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑
8、自行车的人数不低于开私家车的人数?23(12分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 24勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图
9、(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交BC的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c2参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】先把原式化为2x22y23的形式,再根据同底数幂的乘法及除法法则进行计算即可【详解】原式2x22y23,2x2y+3,22,1故选:B【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式
10、化为2x22y23的形式是解答此题的关键2、B【解析】根据旋转的性质得出全等,推出B=D,求出B+BEF=D+AED=90,根据三角形外角性质得出CFD=B+BEF,代入求出即可【详解】解:将ABC绕点A顺时针旋转得到ADE,ABCADE,B=D,CAB=BAD=90,BEF=AED,B+BEF+BFE=180,D+BAD+AED=180,B+BEF=D+AED=18090=90,CFD=B+BEF=90,故选:B【点睛】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键3、B【解析】结合函数图象,利用二次函数的对称性,恰当使用
11、排除法,以及根据函数图象与不等式的关系可以得出正确答案【详解】解:由图象可知,抛物线开口向下,所以正确;若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以错误,从而排除掉A和D;剩下的选项中都有,所以是正确的;易知直线y=kx+c(k0)经过点A,C,当kx+cax2+bx+c时,x的取值范围是x-4或x0,从而错误故选:B【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题4、D【解析】设直线y=x与BC交于E点,分别过A、E两点作
12、x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.解:,又过点,交于点,故选D.5、D【解析】试题解析:55000000=5.5107,故选D考点:科学记数法表示较大的数6、A【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】39000000000=3.91故选A【点睛】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移
13、动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数7、D【解析】过A作AHCD交BC于H,根据题意得到BAE=90,根据勾股定理计算即可【详解】S2=48,BC=4,过A作AHCD交BC于H,则AHB=DCBADBC,四边形AHCD是平行四边形,CH=BH=AD=2,AH=CD=1ABC+DCB=90,AHB+ABC=90,BAH=90,AB2=BH2AH2=1,S1=1故选D【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键8、A【解析】根据B58得出AOC=116,半径相等,得出OC=OA,进而
14、得出OAC=32,利用直径和圆周角定理解答即可【详解】解:B58,AOC=116,OA=OC,C=OAC=32,故选:A【点睛】此题考查了圆周角的性质与等腰三角形的性质此题比较简单,解题的关键是注意数形结合思想的应用9、A【解析】按照有理数的运算规则计算即可.【详解】原式=-35=-15,故选择A.【点睛】本题考查了有理数的运算,注意符号不要搞错.10、C【解析】分析:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,O的直径
15、为26寸,故选C点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据弧长公式l=代入求解即可【详解】解:,故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=12、x1【解析】由题意得x-10,x1.故答案为x1.13、, 【解析】根据表格中数据求出x、y之间的关系,即可得出答案【详解】解:根据表格中数据分析可得:x、y之间的关系为:y=2x+1,则按的第三个键和第四个键应是“+”“1”故答案为+,1【点睛】此题考查了有理数的运算,要求同学们能熟练应用计算器,会用科学记算器
16、进行计算14、 【解析】利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;【详解】AE=EC,BD=CD,DEAB,DE=AB,EDCABC,故答案是:【点睛】考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理15、2【解析】试题分析:反比例函数(x1)及(x1)的图象均在第一象限内,1,1APx轴,SOAP=,SOBP=,SOAB=SOAPSOBP=2,解得:=2故答案为216、【解析】根据题意先利用旋转的性质得到BOD=120,则AOD=150,然后根据弧长公式计算即可.【详解】解:扇形AOB绕点O顺时针旋转120后恰好与扇形COD重合,BO
17、D=120,AOD=AOB+BOD=30+120=150,的长=故答案为:【点睛】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.三、解答题(共8题,共72分)17、(1)1;(2)【解析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得【详解】(1)原式=8-4+6+1=8-4+2+1=1(2)原式= =【点睛】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则18、(1)作图见
18、解析;.(2)作图见解析;(3)1.【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出ABC;(3)直接利用(2)中图形求出三角形面积即可详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:ABC即为所求;(3)SABC=48=1点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形19、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室
19、建成后最多可供1名师生住宿.【解析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=
20、0.375=37.5%,x2=2.375(不合题意,舍去)答:2018至2020年寝室数量的年平均增长率为37.5%(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(1216y)间,单人间的数量在20至30之间(包括20和30), ,解得:15 y16 根据题意得:w=2y+20y+1216y=16y+121,当y=16时,16y+121取得最大值为1答:该校的寝室建成后最多可供1名师生住宿【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系
21、式20、,1【解析】首先化简(a)(1+),然后根据a是不等式a的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可【详解】解:(a)(1+)=,a是不等式a的整数解,a=1,1,1,a1,a+11,a1,1,a=1,当a=1时,原式=121、(1)如图所示,见解析;四边形OABC即为所求;(2)S四边形OABC1【解析】(1)结合网格特点,分别作出点A、B、C关于点O成位似变换的对应点,再顺次连接即可得;(2)根据S四边形OABC=SOAB+SOBC计算可得【详解】(1)如图所示,四边形OABC即为所求(2)S四边形OABCSOAB+SOBC44+228+21【点睛
22、】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形22、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:3645%=80人;开私家车的人数m=8025%=20;扇形统计图中“骑自行车”的圆心
23、角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可试题解析:解:(1)80,20,72.(2)骑自行车的人数为:8020%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,解得x50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用23、(1);(1) ;(3);【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有
24、10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1=;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1=故答案为考点:列表法与树状图法24、见解析.【解析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,S五边形ACBED=SACB+SABE+SADE=ab+b1+ab,又S五边形ACBED=SACB+SABD+SBDE=ab+c1+a(b-a),ab+b1+ab=ab+c1+a(b-a),a1+b1=c1【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键