《2023届广东省惠州仲恺区七校联考中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省惠州仲恺区七校联考中考考前最后一卷数学试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1不等式42x0的解集在数轴上表示为( )ABCD2计算 的结果是( )Aa2B-a2Ca4D-a43下列运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b24中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A0.9610
2、7B9.6106C96105D9.61025某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A10B11C12D136将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).ABCD7自2013年10月总书记提出“精准扶贫”的重要思想以来各地积极推进精准扶贫,加大帮扶力度全国脱贫人口数不断增加仅2017年我国减少的贫困人口就接近1100万人将1100万人用科学记数法表示为()A1.1103人B1.1107人C1.1108人D11106人8如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过
3、点C作CDx轴,垂足为D,且OA=AD,则以下结论:;当0x3时,;如图,当x=3时,EF=;当x0时,随x的增大而增大,随x的增大而减小其中正确结论的个数是( )A1B2C3D49如图,ABCD,DECE,1=34,则DCE的度数为()A34B56C66D5410在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11若a,b互为相反数,则a2b2=_12数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补
4、”原理复原了海岛算经九题古证(以上材料来源于古证复原的原则吴文俊与中国数学和古代世界数学泰斗刘徽)请根据上图完成这个推论的证明过程证明:S矩形NFGDSADC(SANFSFGC),S矩形EBMFSABC(_)易知,SADCSABC,_,_可得S矩形NFGDS矩形EBMF.13如图,点E在正方形ABCD的外部,DCE=DEC,连接AE交CD于点F,CDE的平分线交EF于点G,AE=2DG若BC=8,则AF=_14分式方程=1的解为_15如图,直线l1l2,则1+2=_16已知方程的一个根为1,则的值为_.17观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;请按以上规律解
5、答下列问题:(1)列出第5个等式:a5=_;(2)求a1+a2+a3+an=,那么n的值为_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,ABC=90,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE(1)求证:四边形BCFE是平行四边形;(2)当ACB=60时,求证:四边形BCFE是菱形19(5分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式20(8分)如图,在ABC中,C = 90,E是BC上一点,EDAB,垂足为D求证:ABCEBD21(10分)先化简,再求值:(x2),其中x=22(10分)如图,一次函
6、数y=x+的图象与反比例函数y=(k0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,AOM面积为1(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标23(12分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式(3)登山多长时间时,甲、乙两人距地面的高度差为50米?24
7、(14分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得【详解】移项,得:-2x-4,系数化为1,得:x2,故选D【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变2、D【解
8、析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键3、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可【详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选项正确;D、( a+b)2a2+2ab+b2,故D选项错误,故选C【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键4、B【解析】试题分析:“960万”用科学记数法表示为9.6106,故选B考点:科学记数法表示
9、较大的数5、B【解析】根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决【详解】由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B【点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数6、D【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1,再根据两直线平行,同位角相等可得2=1【详解】如图,由三角形的外角性质得:1=90+1=90+58=148直尺的两边互相平行,2=1=148故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两
10、个内角的和的性质,熟记性质是解题的关键7、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:1100万=11000000=1.1107.故选B.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、C【解析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,A(1,0),B(0,2),即OA=1,OB=2,在OBA和C
11、DA中,AOB=ADC=90,OAB=DAC,OA=AD,OBACDA(AAS),CD=OB=2,OA=AD=1,(同底等高三角形面积相等),选项正确;C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0x2时,选项错误;当x=3时,即EF=,选项正确;当x0时,随x的增大而增大,随x的增大而减小,选项正确,故选C考点:反比例函数与一次函数的交点问题9、B【解析】试题分析:ABCD,D=1=34,DECE,DEC=90,DCE=1809034=56故选B考点:平行线的性质10、D【解析】根据中心对称图形的概念求解【详解】解:A不是中心对称图形,本选项错误;B不是中心对称图形
12、,本选项错误;C不是中心对称图形,本选项错误;D是中心对称图形,本选项正确故选D【点睛】本题主要考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题(共7小题,每小题3分,满分21分)11、1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】a,b互为相反数,a+b=1,a2b2=(a+b)(ab)=1,故答案为1【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键12、SAEF SFMC SANF SAEF SFGC SFMC 【解析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结
13、论【详解】S矩形NFGD=SADC-(SANF+SFGC),S矩形EBMF=SABC-( SANF+SFCM)易知,SADC=SABC,SANF=SAEF,SFGC=SFMC,可得S矩形NFGD=S矩形EBMF故答案分别为 SAEF,SFCM,SANF,SAEF,SFGC,SFMC【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型13、【解析】如图作DHAE于H,连接CG设DG=x,DCE=DEC,DC=DE,四边形ABCD是正方形,AD=DC,ADF=90,DA=DE,DHAE,AH=HE=DG,在GDC与GDE中,GDCGDE(
14、SAS),GC=GE,DEG=DCG=DAF,AFD=CFG,ADF=CGF=90,2GDE+2DEG=90,GDE+DEG=45,DGH=45,在RtADH中,AD=8,AH=x,DH=x,82=x2+(x)2,解得:x=,ADHAFD,,AF=4故答案为414、x=1【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=60,所以分式方程的解为x=1,故答案为:x=1点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验15、30【解析】分别过A、B作l1
15、的平行线AC和BD,则可知ACBDl1l2,再利用平行线的性质求得答案【详解】如图,分别过A、B作l1的平行线AC和BD,l1l2,ACBDl1l2,1=EAC,2=FBD,CAB+DBA=180,EAB+FBA=125+85=210,EAC+CAB+DBA+FBD=210,即1+2+180=210,1+2=30,故答案为30【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补16、1【解析】欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值【详解】设方程的另一根
16、为x1,又x=1,解得m=1故答案为1【点睛】本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题此题也可将x=1直接代入方程3x2-9x+m=0中求出m的值17、 49 【解析】(1)观察等式可得 然后根据此规律就可解决问题;(2)只需运用以上规律,采用拆项相消法即可解决问题【详解】(1)观察等式,可得以下规律:, (2) 解得:n=49.故答案为:49.【点睛】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析【解析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行
17、四边形(2)根据菱形的判定证明即可【详解】(1)证明:DE为AB,AC中点DE为ABC的中位线,DE=BC,DEBC,即EFBC,EF=BC,四边形BCEF为平行四边形(2)四边形BCEF为平行四边形,ACB=60,BC=CE=BE,四边形BCFE是菱形【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型19、答案见解析【解析】试题分析:连接BD,由已知可得MN是BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.试题解析:连接BD,点M、N分别是边DC、BC的中点,MN是BCD的中位线,MNBD,MN
18、= BD, , .20、证明见解析【解析】试题分析:先根据垂直的定义得出EDB90,故可得出EDBC再由BB,根据有两个角相等的两三角形相似即可得出结论试题解析:解:EDAB, EDB90C90, EDBC BB, 点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键21、【解析】根据分式的运算法则即可求出答案【详解】原式,当时,原式 【点睛】本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.22、(1) (2)(0,)【解析】(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A,
19、连接AB,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值AB的长;利用待定系数法求出直线AB的解析式,得到它与y轴的交点,即点P的坐标【详解】(1)反比例函数 y= =(k0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M, |k|=1,k0,k=2,故反比例函数的解析式为:y=;(2)作点 A 关于 y 轴的对称点 A,连接 AB,交 y 轴于点 P,则 PA+PB 最小由,解得,或,A(1,2),B(4,),A(1,2),最小值 AB= =,设直线 AB 的解析式为 y=mx+n,则 ,解得,直线 AB 的解析式为 y= ,x=0 时,y= ,P 点
20、坐标为(0,)【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键23、(1)10;1;(2);(3)4分钟、9分钟或3分钟【解析】(1)根据速度=高度时间即可算出甲登山上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用
21、终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(10-100)20=10(米/分钟),b=312=1故答案为:10;1(2)当0x2时,y=3x;当x2时,y=1+103(x-2)=1x-1当y=1x-1=10时,x=2乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x
22、+100)=50时,解得:x=3答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程24、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】(1)将A(1,0)、C(0,3)两点坐标代入抛物线yax2bx3a中,列方程组求a、b的值即可;(2)将点D(m,m1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D的坐标;(3)分两种情形过点C作CP
23、BD,交x轴于P,则PCBCBD,连接BD,过点C作CPBD,交x轴于P,分别求出直线CP和直线CP的解析式即可解决问题【详解】解:(1)将A(1,0)、C(0,3)代入抛物线yax2bx3a中,得 ,解得 yx22x3;(2)将点D(m,m1)代入yx22x3中,得m22m3m1,解得m2或1,点D(m,m1)在第四象限,D(2,3),直线BC解析式为yx3,BCDBCO45,CDCD2,OD321,点D关于直线BC对称的点D(0,1);(3)存在满足条件的点P有两个过点C作CPBD,交x轴于P,则PCBCBD,直线BD解析式为y3x9,直线CP过点C,直线CP的解析式为y3x3,点P坐标(1,0),连接BD,过点C作CPBD,交x轴于P,PCBDBC,根据对称性可知DBCCBD,PCBCBD,直线BD的解析式为直线CP过点C,直线CP解析式为,P坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0)【点睛】本题考查了二次函数的综合运用关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解