《2023年《分式》知识点总结归纳全面汇总归纳与全面汇总归纳1.pdf》由会员分享,可在线阅读,更多相关《2023年《分式》知识点总结归纳全面汇总归纳与全面汇总归纳1.pdf(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备 精品知识点 分式知识点归纳与总结 一、分式的定义:一般地,如果 A,B 表示两个整数,并且 B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。二、与分式有关的条件 分式有意义:分母不为 0(0B)分式无意义:分母为 0(0B)分式值为 0:分子为 0 且分母不为 0(00BA)分式值为正或大于 0:分子分母同号(00BA或00BA)分式值为负或小于 0:分子分母异号(00BA或00BA)分式值为 1:分子分母值相等(A=B0)分式值为-1:分子分母值互为相反数(A+B=0,0B)三、分式的基本性质 分式的分子和分母同乘(或除以)一个不等于 0 的整式,分式的值不变。字母表
2、示:CBCABA,CBCABA,其中 A、B、C 是整式,C0。拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:BBABBAAA 注意:在应用分式的基本性质时,要注意 C0 这个限制条件和隐含条件 B0。四、分式的约分 1定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。2步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。3注意:分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。分子分母若为多项式,先对分子分母进行因式分解,再约分。4最简分式的定义:一个分式
3、的分子与分母没有公因式时,叫做最简分式。约分时。分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分 1定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。(依据:分式的基本性质!)2最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。通分时,最简公分母的确定方法:1系数取各个分母系数的最小公倍数作为最简公分母的系数.2取各个公因式的最高次幂作为最简公分母的因式.3如果分母是多项式,则
4、应先把每个分母分解因式,然后判断最简公分母.六、分式的四则运算与分式的乘方 学习必备 精品知识点 分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:dbcadcba 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为:ccbdadbadcba 分式的乘方:把分子、分母分别乘方。式子表示为:nnnbaba 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为:cbacbca 异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为:bdbcaddcba 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加
5、括号,看作是分母为 1 的分式,再通分。分式的加、减、乘、除、乘方的混合运算的运算顺序 先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。加减后得出的结果一定要化成最简分式(或整式)。七、整数指数幂 引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即:nmnmaaa mnnmaa nnnbbaa nmnmaaa (0a)nnbaban na1 na0a)10a(0a)(
6、任何不等于零的数的零次幂都等于 1)其中 m,n 均为整数。八、分式方程的解的步骤:去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)解整式方程,得到整式方程的解。检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为 0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为 0,则是原方程的解。产生增根的条件是:是得到的整式方程的解;代入最简公分母后值为 0。九、列分式方程基本步骤:审:仔细审题,找出等量关系。设:合理设未知数。列:根据等量关系列出方程(组)。解:解出方程(组)。验:检验 答:答题。正或大于分子分母同号分式值为负或小于分子分母异号或或分式值为分符号法则分式的分子分母与分式本身的符号改变其中任何两个分式的值分步骤把分式分子分母因式分解然后约去分子与分母的因式注意分式的