内蒙古满洲里市2023年中考适应性考试数学试题含解析.doc

上传人:茅**** 文档编号:87846445 上传时间:2023-04-18 格式:DOC 页数:21 大小:1.24MB
返回 下载 相关 举报
内蒙古满洲里市2023年中考适应性考试数学试题含解析.doc_第1页
第1页 / 共21页
内蒙古满洲里市2023年中考适应性考试数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《内蒙古满洲里市2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古满洲里市2023年中考适应性考试数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列运算正确的是()Aa2a3=a6B()1=2C =4D|6|=62BAC放在正方形网格纸的位置如图,则tanBAC的值为()ABCD3已知抛物线yx2+3向左平移2个单位,那么平移后的抛物线表达式是()Ay(x+2)2+3 By(

2、x2)2+3 Cyx2+1 Dyx2+54一、单选题如图中的小正方形边长都相等,若MNPMEQ,则点Q可能是图中的()A点AB点BC点CD点D5如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A点A与点BB点A与点DC点B与点DD点B与点C6广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A3.65103B3.65104C3.65105D3.651067下列交通标志是中心对称图形的为()ABCD8若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()ABCD9下列运算正确的是()Aa3a2=a6B(a2)3=a5C =3D2+=

3、210当 a0 时,下列关于幂的运算正确的是( )Aa0=1Ba1=aC(a)2=a2D(a2)3=a5二、填空题(共7小题,每小题3分,满分21分)11如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕O圆周旋转时,点F的运动轨迹是_图形12有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_13若圆锥的地面半径为,侧面积为,则圆锥的母线是_14将直尺和直角三角尺按如图方式摆放若,则_

4、 15小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟下列说法:公交车的速度为400米/分钟;小刚从家出发5分钟时乘上公交车;小刚下公交车后跑向学校的速度是100米/分钟;小刚上课迟到了1分钟其中正确的序号是_16若代数式有

5、意义,则x的取值范围是_17如图,已知ABCD,直线EF分别交AB、CD于点E、F,EG平分BEF,若1=50,则2的度数为_.三、解答题(共7小题,满分69分)18(10分)如图,在RtABC中,C=90,翻折C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若CEF与ABC相似当AC=BC=2时,AD的长为 ;当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,CEF与ABC相似吗?请说明理由19(5分)如图,顶点为C的抛物线y=ax2+bx(a0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,AOB=120(1)求这条抛物线的

6、表达式;(2)过点C作CEOB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE,旋转角为(0120),连接EA、EB,求EA+EB的最小值20(8分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;(3)若在轴上有且只有一点,使,求的值.21(10分)如图,一次函数ykx+b的图象与反比例函数y的图象交于A(2,1),B(1,n)两点

7、求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围22(10分)如图,已知O,请用尺规做O的内接正四边形ABCD,(保留作图痕迹,不写做法)23(12分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足

8、的人数24(14分)如图,在ABC中,D为AC上一点,且CD=CB,以BC为直径作O,交BD于点E,连接CE,过D作DFAB于点F,BCD=2ABD(1)求证:AB是O的切线;(2)若A=60,DF=,求O的直径BC的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.2、D【解析】连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明ADC=90,再利用

9、三角函数定义可得答案【详解】连接CD,如图:,CD=,AC=,ADC=90,tanBAC=故选D【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明ADC=903、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线yx23向左平移2个单位可得y(x2)23,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.4、D【解析】根据全等三角形的性质和已知图形得出即可【详解】解:MNPMEQ,点Q应是图中的D点,

10、如图,故选:D【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等5、A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数故选A考点:1倒数的定义;2数轴6、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与

11、小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将365000这个数用科学记数法表示为3.651故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、C【解析】根据中心对称图形的定义即可解答【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意故选C【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图

12、形完全重合8、D【解析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变此题比较简单,但计算时一定要细心9、C【解析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项【详解】解:A. a3a2=a5,原式计算错误,故本选项错误;B. (a2)3=a6,原式计算错误,故本选项错误;C. =3,原式计算正确,故本选项正确

13、;D. 2和不是同类项,不能合并,故本选项错误故选C.【点睛】本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则.10、A【解析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案【详解】A选项:a0=1,正确;B选项:a1= ,故此选项错误;C选项:(a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误; 故选A【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键二、填空题(共7小题,每小题3分,满分21分)11、圆【解析】根据题意作图,即可得到点F的运动轨迹.【详解】如图,根

14、据题意作下图,可知F的运动轨迹为圆O.【点睛】此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.12、【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案详解:等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,从中随机抽取一张,卡片上的图形是中心对称图形的概率是:故答案为点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键13、13【解析】试题解析:圆锥的侧面积=底面半径母线长,把相应数值代入即可求解设母线长为R,则: 解得: 故答案为13.14、80.【解析】由于直尺外形是矩形,

15、根据矩形的性质可知对边平行,所以4=3,再根据外角的性质即可求出结果.【详解】解:如图所示,依题意得:4=3,4=2+1=803=80.故答案为80.【点睛】本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.15、【解析】由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.【详解】解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000

16、m,则其速度为20005=400米/分钟,故正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故正确;公交车一共行驶了2800400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟4分钟,故错误,再由图可知小明跑步时间为3003=100米/分钟,故正确.故正确的序号是:.【点睛】本题考查了一次函数的应用.16、x3【解析】由代数式有意义,得x-30,解得x3,故答案为: x3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:

17、分母不为零;分式值为零:分子为零且分母不为零.17、65【解析】因为ABCD,所以BEF=180-1=130,因为EG平分BEF,所以BEG=65,因为ABCD,所以2=BEG=65三、解答题(共7小题,满分69分)18、解:(1)或(2)当点D是AB的中点时,CEF与ABC相似理由见解析.【解析】(1)当AC=BC=2时,ABC为等腰直角三角形;若CEF与ABC相似,分两种情况:若CE:CF=3:4,如图1所示,此时EFAB,CD为AB边上的高;若CF:CE=3:4,如图2所示由相似三角形角之间的关系,可以推出A=ECD与B=FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D

18、是AB的中点时,CEF与ABC相似可以推出CFE=A,C=C,从而可以证明两个三角形相似【详解】(1)若CEF与ABC相似当AC=BC=2时,ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=AC=当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,CE:CF=AC:BC,EFBC由折叠性质可知,CDEF,CDAB,即此时CD为AB边上的高在RtABC中,AC=3,BC=4,BC=1cosA=AD=ACcosA=3=(II)若CF:CE=3:4,如答图3所示CEFCAB,CEF=B由折叠性质可知,CEF+ECD=90又A+B=90,A=ECD,AD=CD

19、同理可得:B=FCD,CD=BDAD=BD此时AD=AB=1=综上所述,当AC=3,BC=4时,AD的长为或(2)当点D是AB的中点时,CEF与CBA相似理由如下:如图所示,连接CD,与EF交于点QCD是RtABC的中线CD=DB=AB,DCB=B由折叠性质可知,CQF=DQF=90,DCB+CFE=90,B+A=90,CFE=A,又ACB=ACB,CEFCBA19、 (1) y=x2x;(2)点P坐标为(0,)或(0,);(3).【解析】(1)根据AO=OB=2,AOB=120,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)EOC=30,由OA=2OE,OC=,推出当

20、OP=OC或OP=2OC时,POC与AOE相似;(3)如图,取Q(,0)连接AQ,QE由OEQOBE,推出,推出EQ=BE,推出AE+BE=AE+QE,由AE+EQAQ,推出EA+EB的最小值就是线段AQ的长.【详解】(1)过点A作AHx轴于点H,AO=OB=2,AOB=120,AOH=60,OH=1,AH=,A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,抛物线的表达式为:y=x2-x;(2)如图,C(1,-),tanEOC=,EOC=30,POC=90+30=120,AOE=120,AOE=POC=120,OA=2OE,OC=,当OP=OC或OP=2

21、OC时,POC与AOE相似,OP=,OP=,点P坐标为(0,)或(0,)(3)如图,取Q(,0)连接AQ,QE ,QOE=BOE,OEQOBE,EQ=BE,AE+BE=AE+QE,AE+EQAQ,EA+EB的最小值就是线段AQ的长,最小值为【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题20、(1).;(2)点坐标为;.(3).【解析】分析:(1)根据已知列出方程组求解即可;(2)作AMx轴,BNx轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G

22、点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可详解:(1)由题可得:解得,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,解得,.同理,., (在下方),即,.,.在上方时,直线与关于对称.,.,.综上所述,点坐标为;.(3)由题意可得:.,即.,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键21、 (1)y=

23、,y=x1;(2)x2或0x1【解析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围【详解】(1)A(2,1)在反比例函数y=的图象上,1=,解得m=2.反比例函数解析式为y=,B(1,n)在反比例函数上,n=2,B的坐标(1,2),把A(2,1),B(1,2)代入y=kx+b得 解得:一次函数的解析式为y=x1; (2)由图像知:当x2或0x1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于

24、简单题,熟悉函数图像的性质是解题关键.22、见解析【解析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.23、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人【解析】【分析】根据等级A的人数及所占百分比即可得出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;总人数课外阅读时间满足的百分比即得所求【详解

25、】由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的,所以:人,即本次调查的学生人数为200人;由条形图知:C级的人数为60人,所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人,D级的人数为:人,B所在扇形的圆心角为:,补全条形图如图所示:;因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人,答:全校每周课外阅读时间满足的约有360人【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比24、(1)证明过程见解析;(2)【解析】(1)根据CB=CD得出C

26、BD=CDB,然后结合BCD=2ABD得出ABD=BCE,从而得出CBD+ABD=CBD+BCE=90,然后得出切线;(2)根据RtAFD和RtBFD的性质得出AF和DF的长度,然后根据ADF和ACB相似得出相似比,从而得出BC的长度.【详解】(1)CB=CD CBD=CDB 又CEB=90 CBD+BCE=CDE+DCEBCE=DCE且BCD=2ABD ABD=BCE CBD+ABD=CBD+BCE=90CBAB垂足为B 又CB为直径 AB是O的切线.(2)A=60,DF=在RtAFD中得出AF=1 在RtBFD中得出DF=3ADF=ACB A=A ADFACB 即解得:CB=考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁