《内蒙古呼伦贝尔满洲里市2023年中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古呼伦贝尔满洲里市2023年中考数学考试模拟冲刺卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()ABCD2小带和小路两个人开车从A城出发匀速行驶至B城在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示有下列结论;A,B两城相距300 km;小路的车比小带的车晚出发1 h,却早到1 h;小路的车出发后2.5 h追上小带的车;当小带和小路的车相距50 km时,t或t.其中正确的结论有()ABCD3如图是一个由5个相同的正方体组成的立体图形,它的主
3、视图是()ABCD4已知O1与O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )A相交 B内切 C外离 D内含5如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3cm,则滑轮上的点F旋转了( )A60B90C120D456下列几何体中,俯视图为三角形的是( )ABCD7已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周设点运动的时间为,线段的长为表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )ABCD8如图,在ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中
4、,不能判定ED/BC的是( )ABCD9cos60的值等于( )A1BCD10下图是某几何体的三视图,则这个几何体是( )A棱柱B圆柱C棱锥D圆锥二、填空题(共7小题,每小题3分,满分21分)11如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_.12如图,在平面直角坐标系中,已知C(1,),ABC与DEF位似,原点O是位似中心,要使DEF的面积是ABC面积的5倍,则点F的坐标为_13小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到
5、的结论是否合理并且说明理由_.月份六月七月八月用电量(千瓦时)290340360月平均用电量(千瓦时)33014如图,直线ab,BAC的顶点A在直线a上,且BAC100若134,则2_15一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_16如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_17若有意义,则x的范围是_三、解答题(共7小题,满分69分)18(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C(1)求点C和点A的坐标(2)定义“L双抛图形”:直
6、线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有_个交点;若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:_;当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标
7、19(5分)已知:如图,MNQ中,MQNQ(1)请你以MN为一边,在MN的同侧构造一个与MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,B=D求证:CD=AB20(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58为了改善滑梯AB的安全性能,把倾斜角由58减至30,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58=0.85,cos58=0.53,tan58=1.60)21(10分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB
8、相交于点E,与边CD相交于点F(1)求证:OE=OF;(2)如图2,连接DE,BF,当DEAB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形22(10分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.23(12分)如图,BD是矩形ABCD的一条对角线(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF24(14分)如图1,OABC的边OC在y轴的正半轴上,OC3,A(2,1),反比例函数y (x0)的图象经过点B(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线
9、段OA延长交y (x0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,求直线BD的解析式;求线段ED的长度 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:共有12种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:故答案为C【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键2、C【解析】观察图象可判断,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,
10、可判断,再令两函数解析式的差为50,可求得t,可判断,可得出答案【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,都正确;设小带车离开A城的距离y与t的关系式为y小带kt,把(5,300)代入可求得k60,y小带60t,设小路车离开A城的距离y与t的关系式为y小路mtn,把(1,0)和(4,300)代入可得解得y小路100t100,令y小带y小路,可得60t100t100,解得t2.5,即小带和小路两直线的交点横坐标为t2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,不正确
11、;令|y小带y小路|50,可得|60t100t100|50,即|10040t|50,当10040t50时,可解得t,当10040t50时,可解得t,又当t时,y小带50,此时小路还没出发,当t时,小路到达B城,y小带250.综上可知当t的值为或或或时,两车相距50 km,不正确故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间3、A【解析】画出从正面看到的图形即可得到它的主视图【详解】这个几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图4、A【解析】试题分析
12、:O1和O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5345+3,根据圆心距与半径之间的数量关系可知O1与O2相交故选A考点:圆与圆的位置关系5、B【解析】由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3代入,可得n =90,故选B.【点睛】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.6、C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选
13、C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键7、A【解析】解:分析题中所给函数图像,段,随的增大而增大,长度与点的运动时间成正比段,逐渐减小,到达最小值时又逐渐增大,排除、选项,段,逐渐减小直至为,排除选项故选【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图8、C【解析】根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可【详解】A. 当时,能判断;B.当时,能判断;C.当时,不能判断;D.当时,能
14、判断.故选:C.【点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.9、A【解析】根据特殊角的三角函数值直接得出结果.【详解】解:cos60=故选A.【点睛】识记特殊角的三角函数值是解题的关键.10、D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥故选D【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认
15、识二、填空题(共7小题,每小题3分,满分21分)11、(-2,-2)【解析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标【详解】“卒”的坐标为(2,2),故答案是:(2,2)【点睛】考查了坐标确定位置,关键是正确确定原点位置12、(,)【解析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可【详解】解:ABC与DEF位似,原点O是位似中心,要使DEF的面积是ABC面积的5倍,则DEF的边长是ABC边长的倍,点F的坐标为(1,),即(,),故答案为:(,)【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位
16、似图形对应点的坐标的比等于k或k13、不合理,样本数据不具有代表性【解析】根据表中所取的样本不具有代表性即可得到结论【详解】不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量)故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量)【点睛】本题考查了统计表,认真分析表中数据是解题的关键14、46【解析】试卷分析:根据平行线的性质和平角的定义即可得到结论解:直线ab,3=1=34,BAC=100,2=18034100=46,故答案为46.15、1【解析】一组数据中出现次数最多的数据叫做众数,由此可得出答案【详解】一组数据1,3,5,x,1,5的众数和
17、中位数都是1,x=1,故答案为1【点睛】本题考查了众数的知识,解答本题的关键是掌握众数的定义16、2【解析】延长AC交x轴于B根据光的反射原理,点B、B关于y轴对称,CB=CB路径长就是AB的长度结合A点坐标,运用勾股定理求解【详解】解:如图所示,延长AC交x轴于B则点B、B关于y轴对称,CB=CB作ADx轴于D点则AD=3,DB=3+1=1由勾股定理AB=2AC+CB = AC+CB= AB=2即光线从点A到点B经过的路径长为2考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键17、x1【解析】根据二次根式有意义的条件、分式有意
18、义的条件列出不等式,解不等式即可【详解】依题意得:1x0且x30,解得:x1故答案是:x1【点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零三、解答题(共7小题,满分69分)18、(1)C(2,-1),A(1,0);(2)3,0t1,(+2,1)或(-+2,1)或(-1,0)【解析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;将y=3代
19、入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,A(1,0),B(3,0),抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,C(2,-1);(2)将x=0代入抛物线的解析式得:y=3,抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故
20、答案为3;将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0t1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0t1如图2所示:PQAC且PQ=AC,四边形ACQP为平行四边形,又点C的纵坐标为-1,点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2点P的坐标为(+2,1)或(-+2,1),当点P(-1,0)时,也满足条件综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想
21、的应用是解题的关键19、(1)作图见解析;(2)证明书见解析.【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则MNF为所画三角形(2)延长DA至E,使得AE=CB,连结CE证明EACBCA,得:B =E,AB=CE,根据等量代换可以求得答案【详解】解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求(2)如图,延长DA至E,使得AE=CB,连结CEACB +CAD =180,DACDAC +EAC =180,BACBCA =EAC.在EAC和BAC中,AECE,ACCA,EACBC
22、N,AECEACBCA (SAS).B=E,AB=CE.B=D,D=E.CD=CE,CD=AB考点:1.尺规作图;2.全等三角形的判定和性质20、调整后的滑梯AD比原滑梯AB增加2.5米【解析】试题分析: RtABD中,根据30的角所对的直角边是斜边的一半得到AD的长,然后在RtABC中,求得AB的长后用即可求得增加的长度试题解析: RtABD中,AC=3米,AD=2AC=6(m)在RtABC中, ADAB=63.532.5(m).调整后的滑梯AD比原滑梯AB增加2.5米.21、(1)证明见解析;(2)DOF,FOB,EOB,DOE【解析】(1)由四边形ABCD是平行四边形,可得OA=OC,A
23、BCD,则可证得AOECOF(ASA),继而证得OE=OF;(2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论【详解】(1)四边形ABCD是平行四边形,OA=OC,ABCD,OB=OD,OAE=OCF,在OAE和OCF中,AOECOF(ASA),OE=OF;(2)OE=OF,OB=OD,四边形DEBF是平行四边形,DEAB,DEB=90,四边形DEBF是矩形,BD=EF,OD=OB=OE=OF=BD,腰长等于BD的所有的等腰三角形为DOF,FOB,EOB,DOE【点睛】本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质
24、.22、;2.【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.23、(1)作图见解析;(2)证明见解析;【解析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得DEOBFO即可证得结论【详解】解:(1)如图:(2)四边形ABCD为矩形,ADBC,ADB=C
25、BD,EF垂直平分线段BD,BO=DO,在DEO和三角形BFO中,DEOBFO(ASA),DE=BF考点:1作图基本作图;2线段垂直平分线的性质;3矩形的性质24、(1)B(2,4),反比例函数的关系式为y;(2)直线BD的解析式为yx6;ED2 【解析】试题分析:(1)过点A作APx轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;(2)先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; 先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.试题解析:(1)过点A作APx轴于点P,则AP1,OP2,又ABOC3,B(2,4).,反比例函数y (x0)的图象经过的B,4,k8.反比例函数的关系式为y;(2)由点A(2,1)可得直线OA的解析式为yx解方程组,得,点D在第一象限,D(4,2)由B(2,4),点D(4,2)可得直线BD的解析式为yx6;把y0代入yx6,解得x6,E(6,0),过点D分别作x轴的垂线,垂足分别为G,则G(4,0),由勾股定理可得:ED.点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.