《内蒙古准格尔旗2023年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古准格尔旗2023年中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在55的方格纸中将图中的图形N平移到如图所示的位置,那么下列平移正确的是( )A先向下移动1格,再向左移动1格B先向下移动1格,再向左移动2格C先向下移动2格,再向左移动1格D先向下移动2格,再向左移动2格2在平面直角坐标系xOy中,将一块
2、含有45角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为()A(,0)B(2,0)C(,0)D(3,0)3如图,DE是线段AB的中垂线,则点A到BC的距离是A4BC5D64郑州地铁号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()ABCD5如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若A与DOB互余,则EB的
3、长是( )A2B4CD26如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=5,AC=5 ,则B的度数是( )A30 B45 C50 D607如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与ABC相似的是ABCD8如图,四边形ABCD内接于O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC若ABC=105,BAC=25,则E的度数为( )A45B50C55D609如图,在ABC中,C=90,点D在AC上,DEAB,若CDE=165,则B的度数为()A15B55C65D7510如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )ABCD二、填空题
4、(本大题共6个小题,每小题3分,共18分)11计算:2a(2b)=_12若O所在平面内一点P到O的最大距离为6,最小距离为2,则O的半径为_13如图,点D、E、F分别位于ABC的三边上,满足DEBC,EFAB,如果AD:DB=3:2,那么BF:FC=_14如图,AB是O的直径,弦CDAB,垂足为E,如果AB=26,CD=24,那么sinOCE= 15因式分解:mn(nm)n(mn)=_16分解因式(xy1)2(x+y2xy)(2xy)=_三、解答题(共8题,共72分)17(8分)计算:-2-2 - + 018(8分)已知关于x的方程x1+(1k1)x+k11=0有两个实数根x1,x1求实数k的
5、取值范围; 若x1,x1满足x11+x11=16+x1x1,求实数k的值19(8分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:根据以上定义,解决下列问题:已知点P(3,-2)若点A(-2,-1),则d(P,A)= ;若点B(b,2),且d(P,B)=5,则b= ;已知点C(m,n)是直线上的一个动点,且d(P,C)3,求m的取值范围F的半径为1,圆心F的坐标为(0,t),若F上存在点E,使d(E,O)=2,直接写出t的取值范围20(8分)计算:+821(+1)0+2sin602
6、1(8分)如图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧(1)求证:AB为C的切线(2)求图中阴影部分的面积22(10分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数23(12分)
7、求不等式组 的整数解.24. 在一个不透明的布袋中装有三个小球,小球上分别标有数字1、0、2,它们除了数字不同外,其他都完全相同(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,
8、在55方格纸中将图中的图形N平移后的位置如图所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.2、C【解析】过点B作BDx轴于点D,易证ACOBCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点【详解】解:过点B作BDx轴于点D,ACO+BCD90,OAC+ACO90,OACBCD,在ACO与BCD中, ACOBCD(AAS)OCBD,OACD,A(0,2),C(1,0)OD3,BD1,B(3,1
9、),设反比例函数的解析式为y,将B(3,1)代入y,k3,y,把y2代入y,x,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,此时点C的对应点C的坐标为(,0)故选:C【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型3、A【解析】作于利用直角三角形30度角的性质即可解决问题【详解】解:作于H垂直平分线段AB,故选A【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型4、C【解析】列表得
10、出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,恰好选择从同一个口进出的概率为=,故选C【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比5、D【解析】连接CO,由直径AB平分弦CD及
11、垂径定理知COB=DOB,则A与COB互余,由圆周角定理知A=30,COE=60,则OCE=30,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,AB平分CD,COB=DOB,ABCD,CE=DE=2A与DOB互余,A+COB=90,又COB=2A,A=30,COE=60,OCE=30,设OE=x,则CO=2x,CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,BO=CO=4,BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.6、D【解析】根据圆周角定理的推论,得B=D根据直径所对的
12、圆周角是直角,得ACD=90在直角三角形ACD中求出D 则sinD=D=60B=D=60故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边7、B【解析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为、2、只有选项B的各边为1、与它的各边对应成比例故选B【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8、B【解析】先根据圆内接四边形的性质求出ADC的度数,再由圆周角定理得出DCE的度数,根据三角形外角的性质即可得出结论【详解】四边形ABCD内接于O
13、,ABC=105,ADC=180ABC=180105=75,BAC=25,DCE=BAC=25,E=ADCDCE=7525=50【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.9、D【解析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=165,ADE=15,DEAB,A=ADE=15,B=180CA=1809015=75,故选D【点睛】本题考查了平行线的性质、三角形内
14、角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键10、B【解析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、4ab【解析】根据单项式与单项式的乘法解答即可【详解】2a(2b)=4ab故答案为4ab【点睛】本题考查了单项式的乘法,关键是根据单项式的乘法法则解答12、2或1【解析】点P可能在圆内也可能在圆外,因而分两种情况进行讨论.【详解】解:当这点在圆外时,则这个圆的半径是(6-2)2=2;当点在圆内时,则这个圆的半径是(6+2)2=1故答案为2或1.【点睛】此题主要考查
15、点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.13、3:2【解析】因为DEBC,所以,因为EFAB,所以,所以,故答案为: 3:2.14、【解析】垂径定理,勾股定理,锐角三角函数的定义。【分析】如图,设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CDAB,根据垂径定理得出CE=12;在RtOCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sinOCE的度数:。15、【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).16、(y1)1(x1)1【解析】解:令x+y
16、=a,xy=b,则(xy1)1(x+y1xy)(1xy)=(b1)1(a1b)(1a)=b11b+1+a11a1ab+4b=(a11ab+b1)+1b1a+1=(ba)1+1(ba)+1=(ba+1)1;即原式=(xyxy+1)1=x(y1)(y1)1=(y1)(x1)1=(y1)1(x1)1故答案为(y1)1(x1)1点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.三、解答题(共8题,共72分)17、【解析
17、】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案【详解】解:原式=【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.18、 (2) k;(2)-2.【解析】试题分析:(2)根据方程的系数结合根的判别式,即可得出=4k+50,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x2+x2=22k、x2x2=k22,将其代入x22+x22=(x2+x2)22x2x2=26+x2x2中,解之即可得出k的值试题解析:(2)关于x的方程x2+(2k2)x+k22=0有两个实数根x2,x
18、2,=(2k2)24(k22)=4k+50,解得:k,实数k的取值范围为k(2)关于x的方程x2+(2k2)x+k22=0有两个实数根x2,x2,x2+x2=22k,x2x2=k22x22+x22=(x2+x2)22x2x2=26+x2x2,(22k)22(k22)=26+(k22),即k24k22=0,解得:k=2或k=6(不符合题意,舍去)实数k的值为2考点:一元二次方程根与系数的关系,根的判别式.19、(1) 6, 2或4, 1m4;(2)或.【解析】(1)根据“折线距离”的定义直接列式计算;根据“折线距离”的定义列出方程,求解即可;根据“折线距离”的定义列出式子,可知其几何意义是数轴上
19、表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围【详解】解:(1) b=2或4 ,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1m4 (2)设E(x,y),则,如图,若点E在F上,则.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.20、6+【解析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算【详解】解:原式=+81+2=3+41+=6+【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,
20、再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍21、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知
21、识点,能求出CF的长是解答此题的关键22、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人【解析】【分析】根据等级A的人数及所占百分比即可得出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;总人数课外阅读时间满足的百分比即得所求【详解】由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的,所以:人,即本次调查的学生人数为200人;由条形图知:C级的人数为60人,所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人,D级的人数为:人,B所在扇
22、形的圆心角为:,补全条形图如图所示:;因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人,答:全校每周课外阅读时间满足的约有360人【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比23、-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解详解:,由不等式,得:x1,由不等式,得:x3,故原不等式组的解集是1x3,不等式组的整数解是:1、1、0、1、1点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法24、(1);(2)列表
23、见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-102-1(-1,-1)(-1,0)(-1,2)0(0,-1)(0,0)(0,2)2(2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,P(点M落在如图所示的正方形网格内)=.考点:1列表或树状图求概率;2平面直角坐标系.