《内蒙古准格尔旗2023年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古准格尔旗2023年中考一模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知函数y=与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+0的解集是()Ax3B3x0Cx3或x0Dx02下列博物院的标识中不是轴对称图形的是( )ABCD3剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴
2、对称图形,也不是中心对称图形的是()ABCD4已知,如图,AB/CD,DCF=100,则AEF的度数为 ( )A120B110C100D805小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1若小昱在某页写的数为101,则阿帆在该页写的数为何?()A350B351C356D3586实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )Aa+b0Ba-b0C7下列命题是真命题的是( )A过一点有且只有一条直线与已知直线平行B对角线相等且互相垂直的四边形是正
3、方形C平分弦的直径垂直于弦,并且平分弦所对的弧D若三角形的三边a,b,c满足a2b2c2acbcab,则该三角形是正三角形8若数a使关于x的不等式组有解且所有解都是2x+60的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A5B4C3D29如图,AB是O的直径,AB8,弦CD垂直平分OB,E是弧AD上的动点,AFCE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为()A4+3B4+C+D+310二次函数的最大值为( )A3B4C5D6二、填空题(共7小题,每小题3分,满分21分)11已知a+2,求a2+_12因式分解a36a2+9a=_13如图,在A
4、BC中,CA=CB,ACB=90,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90的EDF,与半圆交于点E,F,则图中阴影部分的面积是_14若代数式的值为零,则x=_15如图AB是直径,C、D、E为圆周上的点,则_16如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_17关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_三、解答题(共7小题,满分69分)18(10分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢
5、修供电局距离抢修工地15千米抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度19(5分)综合与探究:如图1,抛物线y=x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点经过点A的直线l与y轴交于点D(0,)(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A,连接FA、BA,设直线l的运动时间为t(t0)秒探究下列问题:请直接写出A的
6、坐标(用含字母t的式子表示);当点A落在抛物线上时,求直线l的运动时间t的值,判断此时四边形ABEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由20(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C求双曲线解析式;点P在x轴上,如果ACP的面积为5,求点P的坐标.21(10分)如图,已知在O中,AB是O的直径,AC8,BC1求O的面积;若D为O上一点,且ABD为等腰三角形,求CD的长22(10分)为了传承祖国的优秀传统文
7、化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”. (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ; (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格23(12分)某商场一种商品的进价为每件30元,售价为每件40元每天可以销售48件,为尽快减少库存,商场决定降价促销若该商品连续两次下调相同的百分率后售价降至每件32.4
8、元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?24(14分)某初中学校组织200位同学参加义务植树活动甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况 每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况 每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;(2)你认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(
9、3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+1的解集【详解】函数y=与函数y=ax2+bx的交点P的纵坐标为1,1=,解得:x=3,P(3,1),故不等式ax2+bx+1的解集是:x3或x1故选C【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标2、A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符
10、合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误3、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误,故选C【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图
11、形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180后,能与原图形重合,那么就说这个图形是中心对称图形.4、D【解析】先利用邻补角得到DCE=80,然后根据平行线的性质求解【详解】DCF=100,DCE=80,ABCD,AEF=DCE=80故选D【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等5、B【解析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为 1,3,5,1,101,;阿帆所写的数为 1,8,15,22,设小昱所写的第n个数为1
12、01,根据题意得:101=1+(n-1)2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)1=1+501=1+350=2故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键6、C【解析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案【详解】解:由数轴,得b-1,0a1A、a+b0,故A错误;B、a-b0,故B错误;C、0,故C符合题意;D、a21b2,故D错误;故选C【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b-1,0a1是解题关键,又利用了有理数的运算7、D【解析】根据真假命题的定义及
13、有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、a2b2c2acbcab,2a22b22c2-2ac-2bc-2ab=0,(a-b)2+(a-c)2+(b-c)2=0,a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立
14、的命题叫做假命题.熟练掌握所学性质是解答本题的关键.8、D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可【详解】不等式组整理得:,由不等式组有解且都是2x+60,即x-3的解,得到-3a-13,即-2a4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键9、A【解析】连AC,OC,BC线段CF扫过的面积扇形MAH的面积+MCH的面积,从而证明即可解决问题【详解】如下
15、图,连AC,OC,BC,设CD交AB于H,CD垂直平分线段OB,COCB,OCOB,OCOBBC,AB是直径,点F在以AC为直径的M上运动,当E从A运动到D时,点F从A运动到H,连接MH,MAMH,CF扫过的面积为,故选:A【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.10、C【解析】试题分析:先利用配方法得到y=(x1)2+1,然后根据二次函数的最值问题求解解:y=(x1)2+1,a=10,当x=1时,y有最大值,最大值为1故选C考点:二次函数的最值二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:=4,=4-1=1
16、故答案为1考点:完全平方公式12、a(a-3)2【解析】根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.【详解】解:故答案为:.【点睛】本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.13、1【解析】连接CD,作DMBC,DNAC,证明DMGDNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得【详解】连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:=CA=CB,ACB=90,点D为AB的中点,CD平分BCA又DMBC,DNAC,D
17、M=DNGDH=MDN=90,GDM=HDN在DMG和DNH中,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=1则阴影部分的面积是:1故答案为1【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键14、3【解析】由题意得,=0,解得:x=3,经检验的x=3是原方程的根15、90【解析】连接OE,根据圆周角定理即可求出答案【详解】解:连接OE,根据圆周角定理可知:C=AOE,D=BOE,则C+D=(AOE+BOE)=90,故答案为:90【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧
18、所对的圆周角相等,都等于这条弧所对的圆心角的一半16、2【解析】过点F作FEAD于点E,则AE=AD=AF,故AFE=BAF=30,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADFSADF可得出其面积,再根据S阴影=2(S扇形BAFS弓形AF)即可得出结论【详解】如图所示,过点F作FEAD于点E,正方形ABCD的边长为2,AE=AD=AF=1,AFE=BAF=30,EF=S弓形AF=S扇形ADFSADF=, S阴影=2(S扇形BAFS弓形AF)=2=2()=【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力17、k【解析】由方程根的情况
19、,根据根的判别式可得到关于k的不等式,则可求得k的取值范围【详解】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,0,即(2k+1)2-4(k2+1)0,解得k,故答案为k【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键三、解答题(共7小题,满分69分)18、吉普车的速度为30千米/时.【解析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案【详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:.解得,x=20经检验,x=20是原方程的解,
20、并且x=20,1.5x=30都符合题意. 答:吉普车的速度为30千米/时. 点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用为中考常见题型,要求学生牢固掌握注意检验19、(1)A(1,0),B(3,0),y=x;(2)A(t1, t);ABEF为菱形,见解析;(3)存在,P点坐标为(,)或(,)【解析】(1)通过解方程x2+x+0得A(1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)作AHx轴于H,如图2,利用OA1,OD得到OAD60,再利用平移和对称的性质得到EAEAt,AEFAEF60,然后根据含30度的直角三角形三边的关系表示出AH,EH即可得到A的坐标
21、;把A(t1,t)代入yx2x得(t1)2(t1)t,解方程得到t2,此时A点的坐标为(2,),E(1,0),然后通过计算得到AFBE2,AFBE,从而判断四边形ABEF为平行四边形,然后加上EFBE可判定四边形ABEF为菱形;(3)讨论:当ABBE时,四边形ABEP为矩形,利用点A和点B的横坐标相同得到t13,解方程求出t得到A(3,),再利用矩形的性质可写出对应的P点坐标;当ABEA,如图4,四边形ABPE为矩形,作AQx轴于Q,先确定此时A点的坐标,然后利用点的平移确定对应P点坐标【详解】(1)当y=0时,x2+x+=0,解得x1=1,x2=3,则A(1,0),B(3,0),设直线l的解
22、析式为y=kx+b,把A(1,0),D(0,)代入得,解得,直线l的解析式为y=x;(2)作AHx轴于H,如图,OA=1,OD=,OAD=60,EFAD,AEF=60,点A 关于直线l的对称点为A,EA=EA=t,AEF=AEF=60,在RtAEH中,EH=EA=t,AH=EH=t,OH=OE+EH=t1+t=t1,A(t1, t);把A(t1, t)代入y=x2+x+得(t1)2+(t1)+=t,解得t1=0(舍去),t2=2,当点A落在抛物线上时,直线l的运动时间t的值为2;此时四边形ABEF为菱形,理由如下:当t=2时,A点的坐标为(2,),E(1,0),OEF=60OF=OE=,EF=
23、2OE=2,F(0,),AFx轴,AF=BE=2,AFBE,四边形ABEF为平行四边形,而EF=BE=2,四边形ABEF为菱形;(3)存在,如图:当ABBE时,四边形ABEP为矩形,则t1=3,解得t=,则A(3,),OE=t1=,此时P点坐标为(,);当ABEA,如图,四边形ABPE为矩形,作AQx轴于Q,AEA=120,AEB=60,EBA=30BQ=AQ=t=t,t1+t=3,解得t=,此时A(1,),E(,0),点A向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,),综上所述,满足条件的P点坐标为(,)或(,)【点睛】本题考查了二
24、次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质20、(1);(2)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)
25、设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或21、(1)25;(2)CD1,CD27【解析】分析:(1)利用圆周角定理的推论得到C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)AB是O的直径,ACB=90,AB是O的直径,AC8,BC1,AB10,O的面积5225(2)有两种情况:如图所示,当点D位于上半圆中点D1时,可知ABD1是等腰直角三角形,且OD1AB,作CEAB垂足为E,CFOD1垂足为F,可得矩形CEOF,C
26、E,OF= CE=,=,,;如图所示,当点D位于下半圆中点D2时,同理可求.CD1,CD27点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.22、(1);(2) 【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率试题解析:(1)对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=考点:列表法与树状图法;概率公式23、(1)两次下降的百
27、分率为10%; (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元【解析】(1)设每次降价的百分率为 x,(1x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x40(1x)232.4x10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的
28、利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得 解得:1.1,2.1,有利于减少库存,y2.1答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可24、(1)9,9;(2)乙;(3)1680棵;【解析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可【详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(36+67+38+129+610)30200=1680(棵),答:本次活动200位同学一共植树1680棵【点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性