《信阳市重点中学2022-2023学年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《信阳市重点中学2022-2023学年中考数学最后一模试卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:AB=4;b2-4ac0;ab0;a2-a
2、b+ac0,其中正确的结论有()个A3B4C2D12如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )ABCD3如图,在矩形ABCD中,O为AC中点,EF过O点且EFAC分别交DC于F,交AB于点E,点G是AE中点且AOG=30,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)OGE是等边三角形;(4). A1B2C3D44对于函数y=,下列说法正确的是()Ay是x的反比例函数B它的图象过原点C它的图象不经过第三象限Dy随x的增大而减小5下列运算中,正确的是 ( )Ax2+5x2=6x4Bx3CD6点A(4,3)经过某种图形变化后得到点B(-3,4
3、),这种图形变化可以是()A关于x轴对称B关于y轴对称C绕原点逆时针旋转D绕原点顺时针旋转7如图所示的几何体,它的左视图是( )ABCD8某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD9如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E若BF=8,AB=5,则AE的长为( )A5B6C8D1210函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx311如图,矩形ABCD中,AB4,BC3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1S2为( )ABCD612某美术社
4、团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若m是方程2x23x10的一个根,则6m29m+2016的值为_14已知一个斜坡的坡度,那么该斜坡的坡角的度数是_15如图,点A,B是反比例函数y=(x0)图象上的两点,过点A,B分别作ACx轴于点C,BDx轴于点D,连接OA,BC,已知点C(2,0),BD=2,SBCD=3,则SAOC=_16如图,在平面直角坐标系
5、中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_ 17如图,在平面直角坐标系中,点P的坐标为(0,4),直线yx3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为_18如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么点A4n+1(n为自然数)的坐标为 (用n表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算
6、步骤19(6分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(3,0),B(0,3),C(1,0)(1)求此抛物线的解析式(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PDAB于点D动点P在什么位置时,PDE的周长最大,求出此时P点的坐标20(6分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率21(6
7、分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC中,点O在线段BC上,BAO=30,OAC=75,AO=,BO:CO=1:3,求AB的长经过社团成员讨论发现,过点B作BDAC,交AO的延长线于点D,通过构造ABD就可以解决问题(如图2)请回答:ADB= ,AB= 请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,ACAD,AO=,ABC=ACB=75,BO:OD=1:3,求DC的长22(8分)如图,在四边形ABCD中,ABCD90,CEAD于点E(1)求证:AECE;(2)若tanD3,求AB的长23(8分)某市教育局为了了解初一学生第一学期
8、参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?24(10分) “C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中ABCD,AMBNED,AEDE,请根据图中数据,求出线段BE和CD的长(sin370.60,cos370.80,tan370.75,结果保留小数点后
9、一位)25(10分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图和图请根据相关信息,解答下列问题:(1)图中m的值为_.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。26(12分)如图,抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PFx轴于点F,交直线CD于点E,设点P的横坐标为m(1)求抛物线解析式并求
10、出点D的坐标;(2)连接PD,CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当CPE是等腰三角形时,请直接写出m的值27(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价元千克2040零售价元千克2650他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】利用抛物线的对称性可确定A点坐标为(-
11、3,0),则可对进行判断;利用判别式的意义和抛物线与x轴有2个交点可对进行判断;由抛物线开口向下得到a0,再利用对称轴方程得到b=2a0,则可对进行判断;利用x=-1时,y0,即a-b+c0和a0可对进行判断【详解】抛物线的对称轴为直线x=-1,点B的坐标为(1,0),A(-3,0),AB=1-(-3)=4,所以正确;抛物线与x轴有2个交点,=b2-4ac0,所以正确;抛物线开口向下,a0,抛物线的对称轴为直线x=-=-1,b=2a0,ab0,所以错误;x=-1时,y0,a-b+c0,而a0,a(a-b+c)0,所以正确故选A【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+
12、c(a,b,c是常数,a0),=b2-4ac决定抛物线与x轴的交点个数:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点也考查了二次函数的性质2、B【解析】根据图示,可得:b0a,|b|a|,据此判断即可【详解】b0a,|b|a|,a+b0,|a+b|= -a-b故选B【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握3、C【解析】EFAC,点G是AE中点,OG=AG=GE=AE,AOG=30,OAG=AOG=30,GOE=90-AOG=90-30=60,OGE是等边三角形,故(3)
13、正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,O为AC中点,AC=2AO=2,BC=AC=,在RtABC中,由勾股定理得,AB=3a,四边形ABCD是矩形,CD=AB=3a,DC=3OG,故(1)正确;OG=a,BC=,OGBC,故(2)错误;SAOE=a=,SABCD=3a=32,SAOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.4、C【解析】直接利用反比例函数的性质结合图象分布得出答案【详解】对于函数y=,y是x2的反比例
14、函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键5、C【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.6、C【解析】分析:根据旋转的定义得到即可详解:因为点A(
15、4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90得到点B,故选C点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角7、A【解析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键8、B【解析】设商品进价为x元,则售价为每件0.8200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8200元
16、,由题意得0.8200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键9、B【解析】试题分析:由基本作图得到AB=AF,AG平分BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AEBF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1故选B考点:1、作图基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质10、D【解析】由题意得,x10,解得x1故选D11、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值【详解】在矩形ABCD中,A
17、B=4,BC=3,F是AB中点,BF=BG=2,S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,S1-S2=43-=,故选A【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答12、A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.二、填空题:(本大题共6个小题,每小
18、题4分,共24分)13、2【解析】把xm代入方程,求出2m23m2,再变形后代入,即可求出答案【详解】解:m是方程2x23x20的一个根,代入得:2m23m20,2m23m2,6m29m+20263(2m23m)+202632+20262,故答案为:2【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m23m214、【解析】坡度=坡角的正切值,据此直接解答【详解】解:,坡角=30【点睛】此题主要考查学生对坡度及坡角的理解及掌握15、1【解析】由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值
19、,利用反比例函数k的几何意义求出三角形AOC面积即可【详解】BDCD,BD=2,SBCD=BDCD=2,即CD=2C(2,0),即OC=2,OD=OC+CD=2+2=1,B(1,2),代入反比例解析式得:k=10,即y=,则SAOC=1 故答案为1【点睛】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键16、【解析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积【详解】抛物线的对称轴为x=
20、-抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BCx轴,点C的横坐标为-1四边形ABCD为菱形,AB=BC=AD=1,点D的坐标为(-2,0),OA=2在RtABC中,AB=1,OA=2,OB=4,S菱形ABCD=ADOB=14=3故答案为3【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键17、【解析】认真审题,根据垂线段最短得出PMAB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用PBMABO,即可求出本题的答案【详解】解:如图,过点P作PMAB,
21、则:PMB=90,当PMAB时,PM最短,因为直线y=x3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,3),在RtAOB中,AO=4,BO=3,AB=,BMP=AOB=90,B=B,PB=OP+OB=7,PBMABO,即:,所以可得:PM=18、(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,41+1=5,点A5(2,1),n=2时,42+1=9,点A9(4,1),n=3时,43+1=13,点A13(6,1),点A4n+1(2n,1)三、解答题:(本大题共9个小题,共78分,解
22、答应写出文字说明、证明过程或演算步骤19、(1)y=x22x+1;(2)( ,)【解析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明AOB是等腰直角三角形,得出BAO=45,再证明PDE是等腰直角三角形,则PE越大,PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,PDE的周长也最大将x=-代入-x2-2x+1
23、,进而得到P点的坐标【详解】解:(1)抛物线y=ax2+bx+c经过点A(1,0),B(0,1),C(1,0),解得,抛物线的解析式为y=x22x+1;(2)A(1,0),B(0,1),OA=OB=1,AOB是等腰直角三角形,BAO=45PFx轴,AEF=9045=45,又PDAB,PDE是等腰直角三角形,PE越大,PDE的周长越大设直线AB的解析式为y=kx+b,则,解得,即直线AB的解析式为y=x+1设P点的坐标为(x,x22x+1),E点的坐标为(x,x+1),则PE=(x22x+1)(x+1)=x21x=(x+)2+,所以当x=时,PE最大,PDE的周长也最大当x=时,x22x+1=(
24、)22()+1=,即点P坐标为(,)时,PDE的周长最大【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中20、(1);(2) .【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率试题解析:解:(1)两次传球的所有结果有4种,分别是ABC,ABA,ACB,ACA每种结果发生的可能性相等,球球恰在B手中的结果只
25、有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等其中,三次传球后,球恰在A手中的结果有ABCA,ACBA这两种,所以三次传球后,球恰在A手中的概率是考点:用列举法求概率21、(1)75;4;(2)CD=4【解析】(1)根据平行线的性质可得出ADB=OAC=75,结合BOD=COA可得出BODCOA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出ABD=75=ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BEAD交AC于点E,同(1)可得出AE=4,在RtAEB中
26、,利用勾股定理可求出BE的长度,再在RtCAD中,利用勾股定理可求出DC的长,此题得解【详解】解:(1)BDAC,ADB=OAC=75BOD=COA,BODCOA,又AO=3,OD=AO=,AD=AO+OD=4BAD=30,ADB=75,ABD=180-BAD-ADB=75=ADB,AB=AD=4(2)过点B作BEAD交AC于点E,如图所示ACAD,BEAD,DAC=BEA=90AOD=EOB,AODEOB,BO:OD=1:3,AO=3,EO=,AE=4ABC=ACB=75,BAC=30,AB=AC,AB=2BE在RtAEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:B
27、E=4,AB=AC=8,AD=1在RtCAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度22、(1)见解析;(2)AB4【解析】(1)过点B作BFCE于F,根据同角的余角相等求出BCF=D,再利用“角角边”证明BCF和CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求
28、得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长【详解】(1)证明:过点B作BHCE于H,如图1CEAD,BHCCED90,1D90BCD90,1290,2D又BCCDBHCCED(AAS)BHCEBHCE,CEAD,A90,四边形ABHE是矩形,AEBHAECE(2)四边形ABHE是矩形,ABHE在RtCED中,设DEx,CE3x,x2DE2,CE3CHDE2ABHE324【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键23、(1)25, 90;(2)见解析;(3)该市 “活动时间不少
29、于5天”的大约有1【解析】试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90;(2)“活动时间为6天” 的人数,如图所示:(3)“活动时间不少于5天”的学生人数占75%,2000075%=1该市“活动时间不少于5天”的大约有1人考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.24、线段BE的长约等于18.8cm,线段CD的长约等于10.8cm【解析】
30、试题分析:在RtBED中可先求得BE的长,过C作CFAE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长试题解析:BNED,NBD=BDE=37,AEDE,E=90,BE=DEtanBDE18.75(cm),如图,过C作AE的垂线,垂足为F,FCA=CAM=45,AF=FC=25cm,CDAE,四边形CDEF为矩形,CD=EF,AE=AB+EB=35.75(cm),CD=EF=AE-AF10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm【点睛】本题考查了解直角三角形的应用,正确地添加辅助线构造直角三角形是解题的关键.25、(1)25;(2)平均数
31、:28.15,所以众数是28,中位数为28,(3)体育测试成绩得满分的大约有300名学生.【解析】(1)根据统计图中的数据可以求得m的值;(2)根据条形统计图中的数据可以计算出平均数,得到众数和中位数;(3)根据样本中得满分所占的百分比,可以求得该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生【详解】解:(1),m的值为25;(2)平均数:,因为在这组样本数据中,28出现了12次,出现的次数最多,所以众数是28;因为将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是28,所以这组样本数据的中位数为28;(3)2000300(名)估计该中学九年级2000名学生中,体育
32、测试成绩得满分的大约有300名学生.【点睛】本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确它们各自的计算方法26、(1)y=x2+2x+3,D点坐标为();(2)当m=时,CDP的面积存在最大值,最大值为;(3)m的值为 或 或【解析】(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到SPCD=(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;
33、当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值【详解】(1)把A(1,0),C(0,3)分别代入y=x2+bx+c得,解得,抛物线的解析式为y=x2+2x+3;把C(0,3)代入y=x+n,解得n=3,直线CD的解析式为y=x+3,解方程组,解得 或,D点坐标为(,);(2)存在设P(m,m2+2m+3),则E(m,m+3),PE=m2+2m+3(m+3)=m2+m,SPCD=(m2+m)=m2+m=(m)2+,当m=时,CDP的面积存在最大值,最大值为;(3)当PC
34、=PE时,m2+(m2+2m+33)2=(m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(m2+2m+33)2=m2+(m+33)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(m+33)2=(m2+m)2,解得m=(舍去)或m=,综上所述,m的值为或或【点睛】本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.27、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱【解析】设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;根据利润销售收入成本,即可求出结论【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:答:购进猕猴桃20千克,购进芒果30千克元答:如果猕猴桃和芒果全部卖完,他能赚420元钱【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算