《2022-2023学年重庆一中重点中学中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年重庆一中重点中学中考数学最后一模试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若一个多边形的内角和为360,则这个多边形的边数是( )A3B4C5D62若a=,则实数a在数轴上对应的点的大致位置是()A点EB点FC点GD点H3下列图形中,线段MN的长度表示点M到直线l的距离的是( )ABCD4如图,已知数轴上的
2、点A、B表示的实数分别为a,b,那么下列等式成立的是( )ABCD5已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A5cmB5cm或3cmC7cm或3cmD7cm6在数轴上标注了四段范围,如图,则表示的点落在( )A段B段C段D段7如图,点O在第一象限,O与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O的坐标是()A(6,4)B(4,6)C(5,4)D(4,5)8下列分式中,最简分式是( )ABCD9二次函数y=ax2+bx+c(a0)的图象如图,则反比例函数y=与一次函数y=bxc在同一坐标系内的图象大致是(
3、 )ABCD10上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()ABCD二、填空题(共7小题,每小题3分,满分21分)11若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)_ 0,(填“”、“”或“”)12一副直角三角板叠放如图所示,现将含45角的三角板固定不动,把含30角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5,第二秒旋转10,第三秒旋转5
4、,第四秒旋转10,按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_13如图,在ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若A=32,则CDB的大小为_度14如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= 15若关于x的方程的解是正数,则m的取值范围是_16反比例函数y=与正比例
5、函数y=k2x的图象的一个交点为(2,m),则=_17因式分解:_三、解答题(共7小题,满分69分)18(10分)山地自行车越来越受中学生的喜爱一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?19(5分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分
6、界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠(1)若顾客选择方式一,则享受优惠的概率为 ;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率20(8分)(11分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由
7、勾股定理得AB1=|x1x1|1+|y1y1|1,所以A,B两点间的距离为AB=我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x0|1+|y0|1,当O的半径为r时,O的方程可写为:x1+y1=r1问题拓展:如果圆心坐标为P(a,b),半径为r,那么P的方程可以写为 综合应用:如图3,P与x轴相切于原点O,P点坐标为(0,6),A是P上一点,连接OA,使tanPOA=,作PDOA,垂足为D,延长PD交x轴于点B,连接AB证明AB是P的切点;是否存在到四点O,P,A,B距离都相等的点Q?若存在,求
8、Q点坐标,并写出以Q为圆心,以OQ为半径的O的方程;若不存在,说明理由21(10分)计算:(1)12018+|2|+2cos30;(2)(a+1)2+(1a)(a+1);22(10分)计算:(2)0+()1+4cos30|4|23(12分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,交CB的延长线于点E(1)求证:DFAC;(2)求tanE的值24(14分)如图,AD是ABC的中线,CFAD于点F,BEAD,交AD的延长线于点E,求证:AF+AE=2AD参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分3
9、0分)1、B【解析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)180=360, 解得n=4; 故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.2、C【解析】根据被开方数越大算术平方根越大,可得答案【详解】解:,34,a=,3a4,故选:C【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出34是解题关键3、A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离故选A4、B【解析】根据图示,可得:b0a,|b|a|,
10、据此判断即可【详解】b0a,|b|a|,a+b0,|a+b|= -a-b故选B【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握5、B【解析】(1)如图1,当点C在点A和点B之间时,点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,MB=AB=4cm,BN=BC=1cm, MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,MB=AB=4cm,BN=BC=1cm,MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在
11、直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.6、C【解析】试题分析:121=232;131=319;15=344;191=45 344445,154191,1419,所以应在段上故选C考点:实数与数轴的关系7、D【解析】过O作OCAB于点C,过O作ODx轴于点D,由切线的性质可求得OD的长,则可得OB的长,由垂径定理可求得CB的长,在RtOBC中,由勾股定理可求得OC的长,从而可求得O点坐标【详解】如图,过O作OCAB于点C,过O作ODx轴于点D,连接OB,O为圆心,AC=BC,A(0,2),B(
12、0,8),AB=82=6,AC=BC=3,OC=83=5,O与x轴相切,OD=OB=OC=5,在RtOBC中,由勾股定理可得OC=4,P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.8、A【解析】试题分析:选项A为最简分式;选项B化简可得原式=;选项C化简可得原式=;选项D化简可得原式=,故答案选A.考点:最简分式.9、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【详解】解:观察二次函数图象可知:开口向上,a1;对称轴大于1,1,b1;二次函数图象与y轴交点在y轴的正
13、半轴,c1反比例函数中ka1,反比例函数图象在第二、四象限内;一次函数ybxc中,b1,c1,一次函数图象经过第二、三、四象限故选C【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论10、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B点睛:
14、本题考查了函数图象,根据距离的变化描述函数是解题关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定mn以及mn的符号,可得结果【详解】解:根据题意得:m1n,且|m|n|,mn1,mn1,(mn)(mn)1故答案为【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键12、14s或38s【解析】试题解析:分两种情况进行讨论:如图: 旋转的度数为: 每两秒旋转 如图: 旋转的度数为: 每两秒旋转 故答案为14s或38s.13、1【解析】根据等腰三角形的性质以及三角形内角和定理在ABC中可求得ACB=ABC=74,
15、根据等腰三角形的性质以及三角形外角的性质在BCD中可求得CDB=CBD=ACB=1【详解】AB=AC,A=32,ABC=ACB=74,又BC=DC,CDB=CBD=ACB=1,故答案为1【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用14、1【解析】先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值【详解】解:根据题意可知,轴,设图中阴影部分的面积从左向右依次为,则,解得:k=2故答案为1考
16、点:反比例函数综合题15、m0且x-20,则有4-m 0且4-m-20,解得:m4且m2.16、4【解析】利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.【详解】把点(2,m)代入反比例函数和正比例函数中得,则.【点睛】本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.17、【解析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解【详解】解:原式,故答案为:【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.三、解答题(共7小题,满分69分)18、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元【解析】(1
17、)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价进价,即可得出关于y的一元一次方程,解之即可得出结论【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900(110%)y=35%y,解得:y=600,答:每辆山地自行车的进价是600元【点睛】本题考查了分式方程的应用、一元一次方程的应
18、用,弄清题意,找准等量关系列出方程是解题的关键.19、(1);(2)【解析】(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;(2)根据题意可以画出相应的树状图,从而可以求得相应的概率【详解】解:(1)由题意可得,顾客选择方式一,则享受优惠的概率为:,故答案为:;(2)树状图如下图所示,则顾客享受折上折优惠的概率是:,即顾客享受折上折优惠的概率是【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率20、问题拓展:(xa)1+(yb)1=r1综合应用:见解析点Q的坐标为(4,3),方程为(x4)1+(y3)1=15【解析】试题分析:问题拓展:设
19、A(x,y)为P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出P的方程;综合应用:由PO=PA,PDOA可得OPD=APD,从而可证到POBPAB,则有POB=PAB由P与x轴相切于原点O可得POB=90,即可得到PAB=90,由此可得AB是P的切线;当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ易证OBP=POA,则有tanOBP=由P点坐标可求出OP、OB过点Q作QHOB于H,易证BHQBOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题试题解析:解:问题拓展:设
20、A(x,y)为P上任意一点,P(a,b),半径为r,AP1=(xa)1+(yb)1=r1故答案为(xa)1+(yb)1=r1;综合应用:PO=PA,PDOA,OPD=APD在POB和PAB中,POBPAB,POB=PABP与x轴相切于原点O,POB=90,PAB=90,AB是P的切线;存在到四点O,P,A,B距离都相等的点Q当点Q在线段BP中点时,POB=PAB=90,QO=QP=BQ=AQ此时点Q到四点O,P,A,B距离都相等POB=90,OAPB,OBP=90DOB=POA,tanOBP=tanPOA=P点坐标为(0,6),OP=6,OB=OP=3过点Q作QHOB于H,如图3,则有QHB=
21、POB=90,QHPO,BHQBOP,=,QH=OP=3,BH=OB=4,OH=34=4,点Q的坐标为(4,3),OQ=5,以Q为圆心,以OQ为半径的O的方程为(x4)1+(y3)1=15考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义21、 (1)1;(2)2a+2【解析】(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案【详解】解:(1)原式=1+2+2=1;(2)原式=a2+2a+1+1a2=2a+2.【点睛】本题考查学生的运
22、算能力,解题的关键是熟练运用运算法则,本题属于基础题型22、4【解析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案【详解】(2)0+()1+4cos30|4|=1+3+4(42)=4+24+2=4【点睛】此题主要考查了实数运算,正确化简各数是解题关键23、(1)证明见解析;(2)tanCBG=【解析】(1)连接OD,CD,根据圆周角定理得BDC=90,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:ODAC,根据切线的性质可得结论;(2)如图,连接BG,先证明EFBG,则CBG=E,求CBG的正切即可【详解】
23、解:(1)证明:连接OD,CD,BC是O的直径,BDC=90,CDAB,AC=BC,AD=BD,OB=OC,OD是ABC的中位线ODAC,DF为O的切线,ODDF,DFAC;(2)解:如图,连接BG,BC是O的直径,BGC=90,EFC=90=BGC,EFBG,CBG=E,RtBDC中,BD=3,BC=5,CD=4,SABC=,即64=5BG,BG=,由勾股定理得:CG=,tanCBG=tanE=.【点睛】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点24、证明见解析.【解析】由题意易用角角边证明BDECDF,得到DF=DE,再用等量代换的思想用含有AE和AF的等式表示AD的长【详解】证明:CFAD于,BEAD,BECF,EBD=FCD,又AD是ABC的中线,BD=CD,在BED与CFD中, ,BEDCFD(AAS)ED=FD,又AD=AF+DF,AD=AE-DE,由+得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化