《内蒙古包头市2023年高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古包头市2023年高考冲刺押题(最后一卷)数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD12()ABCD3已知方程表示的曲线为的图象,对于函数有如下结论:在上单调递减;函数至少存在一个零点;的最大值为;若函数和图象关于原点对称,则由方程所确定;则正确命题序号为( )ABCD4函数的部分图象大致为( )ABCD5观察下列各式:,根据以上规律,则( )ABCD6已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()ABCD7是虚数单位
3、,则( )A1B2CD8给出下列三个命题:“”的否定;在中,“”是“”的充要条件;将函数的图象向左平移个单位长度,得到函数的图象其中假命题的个数是( )A0B1C2D39已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则的内切圆的半径为( )ABCD10 “”是“,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件11下列说法正确的是( )A命题“,”的否定形式是“,”B若平面,满足,则C随机变量服从正态分布(),若,则D设是实数,“”是“”的充分不必要条件12若,则函数在区间内单调递增的概率是( )A B C D二、填空题:本题共4小题,每小题5分,
4、共20分。13正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为,使得;直线与直线所成角的正切值的取值范围是;与平面所成锐二面角的正切值为;正方体的各个侧面中,与所成的锐二面角相等的侧面共四个其中正确命题的序号是_(写出所有正确命题的序号)14已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.15根据如图所示的伪代码,若输入的的值为2,则输出的的值为_.16设为等比数列的前项和,若,且,成等差数列,则 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,
5、求的面积.18(12分)己知等差数列的公差,且,成等比数列.(1)求使不等式成立的最大自然数n;(2)记数列的前n项和为,求证:.19(12分)在平面直角坐标系中,已知向量,其中.(1)求的值;(2)若,且,求的值.20(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.21(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)
6、若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.22(10分)某景点上山共有级台阶,寓意长长久久甲上台阶时,可以一步走一个台阶,也可以一步走两个台阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且(1)若甲走步时所得分数为,求的分布列和数学期望;(2)证明:数列是等比数列;(3)求甲在登山过程中,恰好登上第级台阶的概率参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的
7、四个选项中,只有一项是符合题目要求的。1、B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本
8、题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.2、B【解析】利用复数代数形式的乘除运算化简得答案【详解】故选B【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题3、C【解析】分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,此时不存在图象;(2)当时,此时为实轴为轴的双曲线一部分;(3)当时,此时为实轴为轴的双曲线一部分;(4)当时,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于,在上单调递减,所以正确;对于,函数与的图象
9、没有交点,即没有零点,所以错误;对于,由函数图象的对称性可知错误;对于,函数和图象关于原点对称,则中用代替,用代替,可得,所以正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.4、B【解析】图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【详解】,故奇函数,四个图像均符合。当时,排除C、D当时,排除A。故选B。【点睛】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。5、B【解析】每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算【详解】以及数列的应用根据题设
10、条件,设数字,构成一个数列,可得数列满足,则,故选:B【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项6、A【解析】利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,则的渐近线方程为故选A【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.7、C【解析】由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.8、C【解析】结合不等式、三角函数的性质,对三个命题逐个分析并判断
11、其真假,即可选出答案.【详解】对于命题,因为,所以“”是真命题,故其否定是假命题,即是假命题;对于命题,充分性:中,若,则,由余弦函数的单调性可知,即,即可得到,即充分性成立;必要性:中,若,结合余弦函数的单调性可知,即,可得到,即必要性成立.故命题正确;对于命题,将函数的图象向左平移个单位长度,可得到的图象,即命题是假命题故假命题有.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.9、B【解析】设左焦点的坐标, 由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积
12、,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为: 所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.10、B【解析】先求出满足的值,然后根据充分必要条件的定义判断【详解】由得,即, ,因此“”是“,”的必要不充分条件故选:B【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础解题时可根据条件与结论中参数的取
13、值范围进行判断11、D【解析】由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.12、B【解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.二、填空题:本题共4小题,每小题5分,共20分。13
14、、【解析】取中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:利用等腰三角形的性质即可判断;直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;由,取为中点,则,则即为与平面所成的锐二面角,进而求解;由平行的性质及图形判断即可.【详解】取中点,连接,则,所以,所以平面即为平面,取中点,中点,连接,则易证得,所以平面平面,所以点的运动轨迹为线段,平面即为平面.取为中点,因为是等腰三角形,所以,又因为,所以,故正确;直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,当点为中点时,直线与直线所成角最小,此时,;当点与点或点重合时,
15、直线与直线所成角最大,此时,所以直线与直线所成角的正切值的取值范围是,正确;与平面的交线为,且,取为中点,则即为与平面所成的锐二面角,所以正确;正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以正确故答案为:【点睛】本题考查直线与平面的空间位置关系,考查异面直线成角,二面角,考查空间想象能力与转化思想.14、【解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程
16、整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题15、【解析】满足条件执行,否则执行.【详解】本题实质是求分段函数在处的函数值,当时,.故答案为:1【点睛】本题考查条件语句的应用,此类题要做到读懂算法语句,本题是一道容易题.16、.【解析】试
17、题分析:,成等差数列,又等比数列,.考点:等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量的方程即可求解,考查学生等价转化的思想与方程思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中,在中,又,由得,由余弦定理得,即,解得,所以的面积.【点睛
18、】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题18、(1);(2)证明见解析【解析】(1)根据,成等比数列,有,结合公差,求得通项,再解不等式.(2)根据(1),用裂项相消法求和,然后研究其单调性即可.【详解】(1)由题意,可知,即,.又,.,故满足题意的最大自然数为.(2),. 从而当时,单调递增,且,当时,单调递增,且,所以,由,知不等式成立.【点睛】本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.19、(1)(2).【解析】(1)根据,由向量,的坐标直接计算即得;(2)先求出,再根据向量平行
19、的坐标关系解得.【详解】(1)由题,向量,则.(2),.,整理得,化简得,即,即.【点睛】本题考查平面向量的坐标运算,以及向量平行,是常考题型.20、(1)(2)证明见解析【解析】(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,设的方程为,与联立消去得,同理,直线的斜率=切线的斜率,由,即与互补.【点睛】本题考查直线与抛物线的
20、位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题21、(1)(2)存在,【解析】由数列为“数列”可得,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,两式相减得,据此可得,当时,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得, 在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以. (2)由题意得,故,两式相减得 所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列, 所以 因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,把分别代入不等式可得,,所以存在数列符合题意,的所有值为.【点睛】本题考查数列的新定义、等比数列的通项公式和数列递推公式的运用;考查运算求解能力、逻辑推理能力和对新定义的理解能力;通过反复利用递推公式,得到数列为常数列是求解本题的关键;属于综合型强、难度大型试题.22、见解析【解析】(1)由题可得的所有可能取值为,且,所以的分布列为所以的数学期望(2)由题可得,所以,又,所以,所以是以为首项,为公比的等比数列(3)由(2)可得