《上海交通大学附属中学2022-2023学年高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海交通大学附属中学2022-2023学年高三第二次联考数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数()的图象的大致形状是( )ABCD2执行下面的程序框图,则输出的值为 ( )ABCD3在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是
2、( )ABCD4已知平面向量,则实数x的值等于( )A6B1CD5如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为( )ABCD6已知,是平面内三个单位向量,若,则的最小值( )ABCD57设为等差数列的前项和,若,则ABCD8一个几何体的三视图如图所示,则该几何体的体积为( )ABCD9设,则,三数的大小关系是ABCD10已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是( )A29B30C31D3211根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD12已知非零向量满足,若夹
3、角的余弦值为,且,则实数的值为( )ABC或D二、填空题:本题共4小题,每小题5分,共20分。13在平面五边形中,且.将五边形沿对角线折起,使平面与平面所成的二面角为,则沿对角线折起后所得几何体的外接球的表面积是_.14记等差数列和的前项和分别为和,若,则_.15(5分)已知函数,则不等式的解集为_16以,为圆心的两圆均过,与轴正半轴分别交于,且满足,则点的轨迹方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.18(12分)已
4、知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.19(12分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上, 的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.20(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.21(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.22(10分)数列满足,其前n项和为,数列的前n项积为.(1)求和数列
5、的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对x分类讨论,去掉绝对值,即可作出图象.【详解】 故选C【点睛】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题2、D【解析】根据框图,模拟程序运行,即可求出答案.【详解】运行程序,结束循环,故输出
6、,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.3、A【解析】由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:复数z=i(i为虚数单位)在复平面中对应点Z(0,1),(0,1),将绕原点O逆时针旋转得到,设(a,b),则,即,又,解得:,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4、A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.5、A【解析】设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进
7、而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【详解】设所求切线的方程为,则,联立,消去得,由,解得,方程为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【点睛】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.6、A【解析】由于,且为单位向量,所以可令,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果【详解】解:设,则,从而,等号可取到故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题
8、7、C【解析】根据等差数列的性质可得,即,所以,故选C8、A【解析】根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题9、C【解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.10、B【解析】设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求【详解
9、】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5=1故选C【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题11、C【解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【点睛】本题考查程序框图,是基础题12、D【解析】根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.二、
10、填空题:本题共4小题,每小题5分,共20分。13、【解析】设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,得到直线与的交点为几何体外接球的球心,结合三角形的性质,求得球的半径,利用表面积公式,即可求解.【详解】设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,则由球的性质可知,直线与的交点为几何体外接球的球心,取的中点,连接,由条件得,连接,因为,从而,连接,则为所得几何体外接球的半径,在直角中,由,可得,即外接球的半径为,故所得几何体外接球的表面积为.故答案为:.【点睛】本题主要考查了空间几何体的结构特征,以及多面体的外接球的表面积的计算,其中解答中
11、熟记空间几何体的结构特征,求得外接球的半径是解答的关键,着重考查了空间想象能力与运算求解能力,属于中档试题.14、【解析】结合等差数列的前项和公式,可得,求解即可.【详解】由题意,因为,所以.故答案为:.【点睛】本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.15、【解析】易知函数的定义域为,且,则是上的偶函数由于在上单调递增,而在上也单调递增,由复合函数的单调性知在上单调递增,又在上单调递增,故知在上单调递增令,知,则不等式可化为,即,可得,又,是偶函数,可得,由在上单调递增,可得,则,解得,故不等式的解集为16、【解析】根据圆的性质可知在线段的垂直平分
12、线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,和的中点坐标为,且在线段的垂直平分线上,即,同理可得:,点的轨迹方程为故答案为:【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) .(2) 【解析】(1)根据极坐标与直角坐标互化公式,以及消去参数,即可求解;(2)设两点对应的参数分别为,将直线的参数方程代入曲线方程,结合根与系数的关系,即可求解.【详解】(1)对于曲线的极坐标方程为,可得,又由,可得,即,所以曲线的普通方程
13、为.由直线的参数方程为(为参数),消去参数可得,即直线的方程为,即.(2)设两点对应的参数分别为,将直线的参数方程(为参数)代入曲线中,可得.化简得:,则.所以.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及直线的参数方程的应用,着重考查了推理与运算能力,属于基础题.18、(1)(2)证明见解析【解析】(1)在上有解,设,求导根据函数的单调性得到最值,得到答案.(2)证明,只需证,记,求导得到函数的单调性,得到函数的最小值,得到证明.【详解】(1)由题可得,在上有解,则,令,当时,单调递增;当时,单调递减.所以是的最大值点,所以.(2)由,所以,要证明,只需证,
14、即证.记在上单调递增,且,当时,单调递减;当时,单调递增.所以是的最小值点,则,故.【点睛】本题考查了函数的切线问题,证明不等式,意在考查学生的综合应用能力和转化能力.19、(1)(2)见解析【解析】(1) 由,周长,解得,即可求得标准方程.(2)通过特殊情况的斜率不存在时,求得,再证明的斜率存在时,即可证得为定值.通过设直线的方程为与椭圆方程联立,借助韦达定理求得,利用直线与圆相切,即,求得的关系代入,化简即可证得即可证得结论.【详解】(1)由题意得,周长,且.联立解得,所以椭圆C的标准方程为.(2)当直线l的斜率不存在时,不妨设其方程为,则,所以,即.当直线l的斜率存在时,设其方程为,并设
15、,由,由直线l与圆E相切,得.所以.从而,即.综合上述,得为定值.【点睛】本题考查了椭圆的标准方程,直线与椭圆的位置关系中定值问题,考查了学生计算求解能力,难度较难.20、(1);(2)证明见解析.【解析】(1)由题意求得的坐标,代入椭圆方程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直线CD的方程为,代入,得:设,则有,则AC的方程为,令,得BD的方程为,令,得,证毕.【点睛】本
16、题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是难题21、(1);(2).【解析】(1)求出函数的定义域,即可求出结论;(2)化简集合,根据确定集合的端点位置,建立的不等量关系,即可求解.【详解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以实数的取值范围为.【点睛】本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.22、(1),;(2),证明见解析【解析】(1)利用已知条件建立等量关系求出数列的通项公式(2)利用裂项相消法求出数列的和,进一步利用放缩法求出结论【详解】(1),得是公比为的等比数列,当时,数列的前项积为,则,两式相除得,得,又得,;(2),故.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,数列的前项和的应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题