2022-2023学年华东师范大学第二附属中学高三第二次模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:87796730 上传时间:2023-04-17 格式:DOC 页数:18 大小:2.09MB
返回 下载 相关 举报
2022-2023学年华东师范大学第二附属中学高三第二次模拟考试数学试卷含解析.doc_第1页
第1页 / 共18页
2022-2023学年华东师范大学第二附属中学高三第二次模拟考试数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年华东师范大学第二附属中学高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年华东师范大学第二附属中学高三第二次模拟考试数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )ABCD2为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本

2、情况经过统计绘制如图,其中各项统计不重复若该市老年低收入家庭共有900户,则下列说法错误的是()A该市总有 15000 户低收入家庭B在该市从业人员中,低收入家庭共有1800户C在该市无业人员中,低收入家庭有4350户D在该市大于18岁在读学生中,低收入家庭有 800 户3函数图像可能是( )ABCD4已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为( )ABCD5已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D256记为数列的前项和数列对任意的满足.若,则当取最小值

3、时,等于( )A6B7C8D97已知函数的一条切线为,则的最小值为( )ABCD8已知等差数列中,若,则此数列中一定为0的是( )ABCD9已知等差数列的前项和为,且,则( )A45B42C25D3610在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我和甲的都高丙:我的成绩比乙高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A甲、乙、丙B乙、甲、丙C丙、乙、甲D甲、丙、乙11已知偶函数在区间内单调递减,则,满足( )ABCD12将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为

4、( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数若关于的不等式的解集为,则实数的所有可能值之和为_.14已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.15若实数x,y满足约束条件,则的最大值为_.16展开式中的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面B

5、CGE;(2)求图2中的二面角BCGA的大小.18(12分)已知等比数列,其公比,且满足,和的等差中项是1()求数列的通项公式;()若,是数列的前项和,求使成立的正整数的值19(12分)某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关).年份年份代号年利润(单位:亿元)()求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润;()当统计表中某年年利润的实际值大于由()中线性回归方程计

6、算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公式:,.20(12分)已知,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.21(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.22(10分)已知是公比为的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个

7、,补充在上面问题中并作答参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点,准线与x轴交点,双曲线半焦距,设点 是以点为直角顶点的等腰直角三角形,即,结合点在抛物线上,所以抛物线的准线,从而轴,所以, 即故双曲线的离心率为故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.2、D【解析】根据给出的统计图表,对选项进行逐一判断,即

8、可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭9006%15000(户),A正确,该市从业人员中,低收入家庭共有1500012%1800(户),B正确,该市无业人员中,低收入家庭有1500029%4350(户),C正确,该市大于18 岁在读学生中,低收入家庭有150004%600(户),D错误故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.3、D【解析】先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,即函数为偶函数,故排

9、除选项A,C,当正数越来越小,趋近于0时,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.4、C【解析】设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.5、D【解析】由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知

10、数列单调递减,则,中最大,最小,又,为三角形的三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.6、A【解析】先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.7、

11、A【解析】求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,故,.故,故,.设,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.8、A【解析】将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.9、D【解析】由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和

12、.10、A【解析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A【点睛】本题将数学知识与时政结合,主要考查推理判断能力题目有一定难度,注重了基础知识、逻辑推理能力的考查11、D【解析】首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一

13、个中间数,通过它实现大小关系的传递,属于中档题.12、B【解析】根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由分段函数可得不满足题意;时,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和【详解】解:由函数,可得的增区间为,时,时,当关于的不等式的解集为,可得不成立,时,

14、时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点综上可得的所有值的和为1故答案为:1【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题14、【解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不

15、成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题15、3【解析】作出可行域,可得当直线经过点时,取得最大值,求解即可.【详解】作出可行域(如下图阴影部分),联立,可求得点,当直线经过点时,.故答案为:3.【点睛】本题考查线性规划,考查数形结合的数学思想,属于基础题.16、30【解析】先将问题转化为二项式的系数问题,利用二项展开式的通项公式求

16、出展开式的第项,令的指数分别等于2,4,求出特定项的系数【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)见详解;(2) .【解析】(1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2)在图中找到对应的平面角,再求此平

17、面角即可.于是考虑关于的垂线,发现此垂足与的连线也垂直于.按照此思路即证.【详解】(1)证:,又因为和粘在一起.,A,C,G,D四点共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得证.(2)过B作延长线于H,连结AH,因为AB平面BCGE,所以而又,故平面,所以.又因为所以是二面角的平面角,而在中,又因为故,所以.而在中,,即二面角的度数为.【点睛】很新颖的立体几何考题首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力18、 () .(

18、) .【解析】()由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(),由数列的错位相减法求和可得,解方程可得所求值【详解】()等比数列,其公比,且满足,和的等差中项是即有,解得: ()由()知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题19、(),该公司年年利润的预测值为亿元;().【解析】()求出和的值,将表格中的数据代入最小二乘法公式,求得和的值,进而可求得关于的线性回归方程,然后将代入回归直线方程,可得出该公司年年利润的估计值;()利用()中的回归直线

19、方程计算出从年至年这年被评为级利润年的年数,然后利用组合计数原理结合古典概型的概率可得出所求事件的概率.【详解】()根据表中数据,计算可得,又,关于的线性回归方程为.将代入回归方程得(亿元),该公司年的年利润的预测值为亿元.()由()可知年至年的年利润的估计值分别为、(单位:亿元),其中实际利润大于相应估计值的有年.故这年中被评为级利润年的有年,评为级利润年的有年.记“从年至年这年的年利润中随机抽取年,恰有年为级利润年”的概率为,.【点睛】本题考查利用最小二乘法求回归直线方程,同时也考查了古典概型概率的计算,涉及组合计数原理的应用,考查计算能力,属于中等题.20、(1);(2)证明见解析【解析

20、】(1)利用零点分段法,求出各段的取值范围然后取并集可得结果.(2)利用绝对值三角不等式可得,然后使用柯西不等式可得结果.【详解】(1)由,所以由当时,则所以当时,则当时,则综上所述:(2)由当且仅当时取等号所以由,所以所以令根据柯西不等式,则当且仅当,即取等号由故,又则【点睛】本题考查使用零点分段法求解绝对值不等式以及柯西不等式的应用,属基础题.21、(1);(2)【解析】(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动点的轨迹的方程;(2)设出切线的斜率分别为,切点,点,则可得过点的拋物线的切线方程为,联立抛物线方程并化简,由相切时可得两条切线斜率关系;由抛物线方程求得导函数,

21、并由导数的几何意义并代入抛物线方程表示出,可求得,结合点满足的方程可得的取值范围,即可求得的范围.【详解】(1)设点,点到直线的距离等于,化简得,动点的轨迹的方程为.(2)由题意可知,的斜率都存在,分别设为,切点,设点,过点的拋物线的切线方程为,联立,化简可得,即,.由,求得导函数,因为点满足,由圆的性质可得,即直线斜率的取值范围为.【点睛】本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.22、见解析【解析】选择或或,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【详解】选择:因为,所以,所以令,即,所以使得的正整数的最小值为;选择:因为,所以,因为,所以不存在满足条件的正整数;选择:因为,所以,所以令,即,整理得当为偶数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为【点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁