2023届辽宁省抚顺市新宾县重点达标名校中考押题数学预测卷含解析.doc

上传人:lil****205 文档编号:87841195 上传时间:2023-04-18 格式:DOC 页数:19 大小:1,020KB
返回 下载 相关 举报
2023届辽宁省抚顺市新宾县重点达标名校中考押题数学预测卷含解析.doc_第1页
第1页 / 共19页
2023届辽宁省抚顺市新宾县重点达标名校中考押题数学预测卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届辽宁省抚顺市新宾县重点达标名校中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届辽宁省抚顺市新宾县重点达标名校中考押题数学预测卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,已知是中的边上的一点,的平分线交边于,交于,那么下列结论中错误的是( )ABACBDABBFABECCBDFBECDBDFBAE2若函数与y=2x4的图象的交点坐标为(a,

2、b),则的值是()A4B2C1D23如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()ABCD4如图,ABCD,DECE,1=34,则DCE的度数为()A34B56C66D545有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC6甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是(

3、)A甲超市的利润逐月减少B乙超市的利润在1月至4月间逐月增加C8月份两家超市利润相同D乙超市在9月份的利润必超过甲超市7实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )Aa2Ba3CabDab8在ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )A5B7C9D119在下列四个图案中既是轴对称图形,又是中心对称图形的是( )ABC.D103的绝对值是()A3B3C-D二、填空题(本大题共6个小题,每小题3分,共18分)11受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市2018年快递业务

4、量将达到5.5亿件,数据5.5亿用科学记数法表示为_12将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_13若是关于的完全平方式,则_14已知关于x的方程有两个不相等的实数根,则m的最大整数值是 15如图,AB为O的直径,BC为O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且AED=27,则BCD的度数为_16如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C恰好落在直线AB上,则点C的坐标为 三、解答题(共8题,共72分)17(8分)已知圆O的半径长为2,点A、B、C为圆O上三点

5、,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设OAC=,请用表示AOD;(2)如图,当点B为的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长18(8分)如图,O是ABC的外接圆,AE平分BAC交O于点E,交BC于点D,过点E做直线lBC(1)判断直线l与O的位置关系,并说明理由;(2)若ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长19(8分)观察下列算式: 1 3 - 22 = 3 - 4 = -1 2 4 - 32 = 8 - 9

6、 = -13 5 - 42 = 15 - 16 = -1 (1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由20(8分)如图,AB是O的直径,点C是弧AB的中点,点D是O外一点,AD=AB,AD交O于F,BD交O于E,连接CE交AB于G(1)证明:C=D;(2)若BEF=140,求C的度数;(3)若EF=2,tanB=3,求CECG的值21(8分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.22(10分)如图,在ABC中,ABAC,以AB为

7、直径作半圆O,交BC于点D,连接AD过点D作DEAC,垂足为点E求证:DE是O的切线;当O半径为3,CE2时,求BD长23(12分)观察猜想:在RtABC中,BAC=90,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90,点D落在点E处,如图所示,则线段CE和线段BD的数量关系是 ,位置关系是 探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图中画出图形,并证明你的判断拓展延伸:如图,BAC90,若ABAC,ACB=45,AC=,其他条件不变,过点D作DFAD交CE于点F,请直接写出线段CF长度的最大值24如图,在平面直角坐标系中,已

8、知OA6厘米,OB8厘米点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).(1)t为何值时,APQ与AOB相似?(2)当 t为何值时,APQ的面积为8cm2?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据相似三角形的判定,采用排除法,逐项分析判断【详解】BAD=C,B=B,BACBDA故A正确BE平分ABC,ABE=CBE,BFABEC故B正确BFA=BEC,BFD=BEA,BDFBAE故D正确而不能证明BDFBEC,故C错误故选C【点睛】本题考查相似三角形的判定识别两三角形

9、相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角2、B【解析】求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可【详解】解方程组,把代入得:=2x4,整理得:x2+2x+1=0,解得:x=1,y=2,交点坐标是(1,2),a=1,b=2,=11=2,故选B【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值3、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可【详解】解:ABBD,CDBD,EFBD,ABCDEFABEDCE,故选项B正确,EFAB,故选项C,D正确,故选:A【点睛】考查平行线的性质,相似三角形的判定和性质

10、,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型4、B【解析】试题分析:ABCD,D=1=34,DECE,DEC=90,DCE=1809034=56故选B考点:平行线的性质5、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本

11、题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.6、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上升或下降来表示统计数量增减变化7、D【解析】试题分析:A如图所示:3a2,故此选项错误;B如图所示

12、:3a2,故此选项错误;C如图所示:1b2,则2b1,又3a2,故ab,故此选项错误;D由选项C可得,此选项正确故选D考点:实数与数轴8、B【解析】试题解析:D、E、F分别为AB、BC、AC中点,DF=BC=2,DFBC,EF=AB=,EFAB,四边形DBEF为平行四边形,四边形DBEF的周长=2(DF+EF)=2(2+)=1故选B9、B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形

13、,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选B考点:轴对称图形和中心对称图形10、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.二、填空题(本大题共6个小题,每小题3分,共18分)11、5.51【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定

14、n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数详解:5.5亿=5 5000 0000=5.51,故答案为5.51点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12、y=3x-1【解析】y=3x+1的图象沿y轴向下平移2个单位长度,平移后所得图象对应的函数关系式为:y=3x+12,即y=3x1故答案为y=3x113、1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=8,进而求出答案详解:x2+2(

15、m-3)x+16是关于x的完全平方式,2(m-3)=8,解得:m=-1或1,故答案为-1或1点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键14、1【解析】试题分析:关于x的方程有两个不相等的实数根,.m的最大整数值为1考点:1.一元二次方程根的判别式;2.解一元一次不等式15、117【解析】连接AD,BD,利用圆周角定理解答即可【详解】连接AD,BD,AB为O的直径,ADB=90,AED=27,DBA=27,DAB=90-27=63,DCB=180-63=117,故答案为117【点睛】此题考查圆周角定理,关键是根据圆周角定理解答16、(2,2)【解析】试题分析:直线

16、y=2x+4与y轴交于B点,x=0时,得y=4,B(0,4)以OB为边在y轴右侧作等边三角形OBC,C在线段OB的垂直平分线上,C点纵坐标为2将y=2代入y=2x+4,得2=2x+4,解得x=2所以C的坐标为(2,2)考点:2一次函数图象上点的坐标特征;2等边三角形的性质;3坐标与图形变化-平移三、解答题(共8题,共72分)17、(1);(2);(3)【解析】(1)连接OB、OC,可证OBC是等边三角形,根据垂径定理可得DOC等于30,OA=OC可得ACO=CAO=,利用三角形的内角和定理即可表示出AOD的值.(2)连接OB、OC,可证OBC是等边三角形,根据垂径定理可得DOB等于30,因为点

17、D为BC的中点,则AOB=BOC=60,所以AOD等于90,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB、OC.BC=AOOB=OC=BCOBC是等边三角形BOC=60点D是BC的中点BOD=OA=OC=AOD=180-=150-2(2)如图2:连接OB、OC、OD.由(1)可得:OBC是等边三角形,BOD=OB=2,OD=OBcos=B为的中点,AOB=BOC=60AOD=90根据勾

18、股定理得:AD= (3)如图3.圆O与圆D相内切时:连接OB、OC,过O点作OFAEBC是直径,D是BC的中点以BC为直径的圆的圆心为D点由(2)可得:OD=,圆D的半径为1AD=设AF=x在RtAFO和RtDOF中, 即解得:AE=如图4.圆O与圆D相外切时:连接OB、OC,过O点作OFAEBC是直径,D是BC的中点以BC为直径的圆的圆心为D点由(2)可得:OD=,圆D的半径为1AD=在RtAFO和RtDOF中, 即解得:AE=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.18、(1)直

19、线l与O相切;(2)证明见解析;(3)【解析】试题分析:(1)连接OE、OB、OC由题意可证明,于是得到BOE=COE,由等腰三角形三线合一的性质可证明OEBC,于是可证明OEl,故此可证明直线l与O相切;(2)先由角平分线的定义可知ABF=CBF,然后再证明CBE=BAF,于是可得到EBF=EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明BEDAEB,由相似三角形的性质可求得AE的长,于是可得到AF的长试题解析:(1)直线l与O相切理由如下:如图1所示:连接OE、OB、OCAE平分BAC,BAE=CAEBOE=COE又OB=OC,OEBClBC,OEl直线l与O相

20、切(2)BF平分ABC,ABF=CBF又CBE=CAE=BAE,CBE+CBF=BAE+ABF又EFB=BAE+ABF,EBF=EFBBE=EF(3)由(2)得BE=EF=DE+DF=1DBE=BAE,DEB=BEA,BEDAEB,即,解得;AE=,AF=AEEF=1=考点:圆的综合题19、;答案不唯一.如; .【解析】(1)根据的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立利用整式的混合运算方法加以证明20、(1)见解析;(2)70;(3)1【解析】(1)先根据等边对等角得出B=D,即可得出结论;(2)先判断出DFE=B

21、,进而得出D=DFE,即可求出D=70,即可得出结论;(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出ACGECA,即可得出结论【详解】(1)AB=AD,B=D,B=C,C=D;(2)四边形ABEF是圆内接四边形,DFE=B,由(1)知,B=D,D=DFE,BEF=140=D+DFE=2D,D=70,由(1)知,C=D,C=70;(3)如图,由(2)知,D=DFE,EF=DE,连接AE,OC,AB是O的直径,AEB=90,BE=DE,BE=EF=2,在RtABE中,tanB=3,AE=3BE=6,根据勾股定理得,AB=,OA=OC=AB=,点C是 的中点, ,A

22、OC=90,AC=OA=2,CAG=CEA,ACG=ECA,ACGECA,CECG=AC2=1【点睛】本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键21、(1),;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,该方程的一个根为1,.解得.a的值为,该方程的另一根为

23、.(2),不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.22、(1)证明见解析;(2)BD2【解析】(1)连接OD,AB为0的直径得ADB=90,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为ABC的中位线,所以ODAC,而DEAC,则ODDE,然后根据切线的判定方法即可得到结论;(2)由B=C,CED=BDA=90,得出DECADB,得出,从而求得BDCD=ABCE,由BD=CD,即可求得BD2=ABCE,然后代入数据即可得到结果【详解】(1)证明:连接OD,如图,AB为0的直径,

24、ADB90,ADBC,ABAC,AD平分BC,即DBDC,OAOB,OD为ABC的中位线,ODAC,DEAC,ODDE,DE是0的切线;(2)BC,CEDBDA90,DECADB,BDCDABCE,BDCD,BD2ABCE,O半径为3,CE2,BD2【点睛】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线也考查了等腰三角形的性质、三角形相似的判定和性质23、(1)CE=BD,CEBD(2)(1)中的结论仍然成立理由见解析;(3).【解析】分析:(1)线段AD绕点A逆时针旋转90得到AE,根据旋转的性质得到AD=AE,BAD=CAE,得到BADCAE,CE=BD,ACE=B,

25、得到BCE=BCA+ACE=90,于是有CE=BD,CEBD(2)证明的方法与(1)类似(3)过A作AMBC于M,ENAM于N,根据旋转的性质得到DAE=90,AD=AE,利用等角的余角相等得到NAE=ADM,易证得RtAMDRtENA,则NE=MA,由于ACB=45,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到DCF=90,由此得到RtAMDRtDCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值详解:(1)AB=AC,BAC=90,线段AD绕点A逆时针旋转90得到AE,AD=AE,BAD=CAE,BADCAE,CE=BD

26、,ACE=B,BCE=BCA+ACE=90,BDCE;故答案为CE=BD,CEBD(2)(1)中的结论仍然成立理由如下:如图,线段AD绕点A逆时针旋转90得到AE,AE=AD,DAE=90,AB=AC,BAC=90CAE=BAD,ACEABD,CE=BD,ACE=B,BCE=90,即CEBD,线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CEBD(3)如图3,过A作AMBC于M,ENAM于N,线段AD绕点A逆时针旋转90得到AEDAE=90,AD=AE,NAE=ADM,易证得RtAMDRtENA,NE=AM,ACB=45,AMC为等腰直角三角形,AM=MC,MC=NE,AMBC,E

27、NAM,NEMC,四边形MCEN为平行四边形,AMC=90,四边形MCEN为矩形,DCF=90,RtAMDRtDCF,设DC=x,ACB=45,AC=,AM=CM=1,MD=1-x,CF=-x2+x=-(x-)2+,当x=时有最大值,CF最大值为点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质24、(1)t秒;(1)t5(s)【解析】(1)利用勾股定理列式求出 AB,再表示出 AP、AQ,然后分APQ 和AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可

28、;(1)过点 P 作 PCOA 于 C,利用OAB 的正弦求出 PC,然后根据三角形的面积公式列出方程求解即可【详解】解:(1)点 A(0,6),B(8,0),AO6,BO8,AB 10,点P的速度是每秒1个单位,点 Q 的速度是每秒1个单位,AQt,AP10t,APQ是直角时,APQAOB,即,解得 t6,舍去;AQP 是直角时,AQPAOB,即,解得 t,综上所述,t秒时,APQ 与AOB相似;(1)如图,过点 P 作 PCOA 于点C,则 PCAPsinOAB(10t)(10t),APQ的面积t(10t)8, 整理,得:t110t+100,解得:t5+6(舍去),或 t5,故当 t5(s)时,APQ的面积为 8cm1【点睛】本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁